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� The contemporaneous relation between risk and return of crude oil futures is significantly negative.
� The contemporaneous negative relation between downside risk and return is stronger than volatility/jump risk.
� The intertemporal volatility/jump risk-return relationship is insignificant.
� There is weak negative correlation between downside risk and excepted return in the crude oil futures market.
� There is not the risk–return trade-off in the crude oil futures market.
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This paper comprehensively examines the existence and significance of a contemporaneous/intertempo-
ral risk-return trade-off for crude oil futures using high-frequency transaction data. The results reveal
that the contemporaneous relation between risk (volatility risk, downside risk or jump risk) and return
in the crude oil futures market is negative and statistically significant and that the contemporaneous neg-
ative relation between downside risk and return is stronger than the two others. However, the intertem-
poral volatility/jump risk-return relationship is insignificant, and there is weak negative correlation
between downside risk and expected return in the crude oil futures market. These findings can be
explained by the asymmetric effect of risk on returns. The findings are robust across different samples
and different measures of volatility, downside and jump risks. Thus, there is no risk-return trade-off in
the crude oil futures market.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The crude oil market plays an important role in the economic
system [1]. Crude oil is one of the most important energy sources
for a nation’s economic development [2–4]. Thus, analyzing crude
oil futures has attracted considerable attention from academics,
governments and investors.

Among the various research topics on crude oil futures, estimat-
ing the risk-return relationship in the crude oil futures market is of
special interest for energy researchers. Notably, the empirical evi-
dence is mixed. Some researchers find that there is a risk-return
trade-off for crude oil futures (see, e.g., [5–7]). However, some
studies support the contention that the relation between risk and
return in the crude oil futures market is negative (see, e.g., [8–11]).

Thus, the research results are inconsistent, and accurately esti-
mating the risk-return relationship in the crude oil futures market
is a challenging task. In this paper, we comprehensively analyze
the relationship between contemporaneous/intertemporal risk
and return in the crude oil futures market. Compared with the
existing literature, our study offers the following advantages and
contributions. First, existing studies focus mainly on the correla-
tion between volatility risk and return of crude oil futures (see,
e.g., [10,11]). However, we not only estimate the volatility
risk-return relationship but also investigate the downside/jump
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risk-return relationship in the crude oil futures market. Second,
some studies show that the contemporaneous risk-return
relationship and intertemporal risk-return relationship is different
(see, e.g., [5,8]). Thus, our analysis is more comprehensive and
examines both the contemporaneous risk-return relationship
and intertemporal risk-return relationship in the crude oil
futures market. Third, the overwhelming majority of studies
use low-frequency data to measure risk when investigating the
risk-return trade-off for crude oil futures (see, e.g., [7,10]). We
use high-frequency transaction data to measure the volatility,
downside and jump risks of crude oil futures. The high-frequency
transaction data contain far more information than the
low-frequency transaction data, which more accurately measure
the risks (see [12–14]). Thus, our empirical results are more
reliable than the results based on low-frequency transaction data.
Finally, we find that the failure of both contemporaneous and
intertemporal risk-return tradeoffs in the crude oil futures market
and the asymmetric effect of risk on returns are important reasons
for the lack of evidence of contemporaneous and intertemporal
risk-return tradeoffs. Our findings can be utilized to enhance risk
management and portfolio diversification, and help investors to
make better choices under uncertainty in the crude oil futures
market.

The remainder of this paper is organized as follows. The next
section offers a literature review that addresses studies on the
risk-return relationship in energy markets, in particular the oil
market. In Section 3, we measure the volatility, downside and jump
risks. Section 4 describes the data. In Section 5, we estimate the
relationship between contemporaneous risk and return for crude
oil futures using high-frequency transaction data. Section 6 exam-
ines the existence and significance of an intertemporal risk-return
trade-off in the crude oil futures market through high-frequency
data. Section 7 concludes.
2. Literature review

The risk-return trade-off in energy markets is a hot topic. In
recent years, many researchers have paid close attention to the
relation between risk and return in the energy project investment
and the energy futures markets.

Many studies analyze the risk and return relationship in energy
project investment, for example, carbon capture and storage (CCS)
technologies in power generation plant investment [15], wind
energy investment [16], coal-fired electricity investment [17],
and community-based photovoltaic investment [18]. Generally,
there is a risk-return trade-off in energy project investment.

However, the findings do not appear to be consistent, in partic-
ular in the crude oil futures market. Some studies show that the
relation between the risk and return of crude oil futures is positive.
Kolos and Ronn [5] found that the market price of risk estimates in
US markets (Pennsylvania–New Jersey–Maryland forwards, Cin-
ergy, Gas and Oil) is positive, but most are not statistically signifi-
cant. In the European Energy Exchange market, they found that the
commodity market price of risk is significantly positive. Cotter and
Hanly [6] estimated a time-varying measure of risk aversion by
applying a GARCH-M model and found that the coefficient of rela-
tive risk aversion was positive, indicating that the relationship
between volatility and expected return of NYMEX New York Har-
bor (HU) Unleaded Gasoline was positive. Cifarelli and Paladino
[7] used a univariate GARCH(1,1)-M model to estimate the relation
between volatility risk and return. The evidence suggested that
there is a positive feedback trading and positive volatility risk
and return relationship in the oil market.

However, some studies found that the risk and return relation-
ship in the crude oil futures market was negative. Following
Cifarelli and Paladino [7], Li et al. [8] found an intertemporal
negative relation between the return on the price of oil futures
and volatility components. In addition, Miffre et al. [19] indicated
that there is a negative relationship between idiosyncratic
volatility risk and expected returns in commodity futures markets
(including the crude oil market) under traditional benchmarks.
Kristoufek [9] also found that the correlation between returns
and the volatility risk of both Brent and WTI crude oils is negative.
Chatrath et al. [10] showed that the relation between crude oil
futures returns and implied volatility risk is negative. Chiarella
et al. [11] used a continuous time stochastic volatility model to
study the relationship between return and volatility risk in
commodity futures markets. Their empirical results indicated
a negative relation in the crude oil futures market, in particular
during periods of high volatility risk driven mainly by market-
wide shocks.

In summary, it must be noted that the literature provides a
number of good references for understanding the relationship
between risk and return in the crude oil futures market. However,
it is necessary to further analyze certain issues, such as the down-
side/jump risk-return relationship, the contemporaneous and
intertemporal risk-return relationship, and the relationship
between risk and return using high-frequency transaction data.
In this paper, we study the above mentioned issues and investigate
the risk-return trade-off in the crude oil futures market based on
high-frequency data.

3. Alternative risk measures

3.1. Volatility risk

Volatility risk denotes the fluctuation in financial asset prices
and is used to measure uncertainty in return on assets and reflect
the risk level of financial assets. Volatility risk in financial markets
cannot be observed, and thus a method is required to measure it
(see, e.g., [20,21,12]). There are many methods to measure volatil-
ity risk, such as GARCH-class models (see, e.g., [20,22–26]) and SV-
class models (see, e.g., [21,27,28]), among others (see, e.g., [29]).
However, GARCH-type and SV-type models do not adequately
describe whole-day volatility information as they use low-
frequency data to measure volatility. In the last few decades,
computers have greatly reduced the cost of recording and storing
high-frequency data, which are now important in the study of
volatility in financial markets. Andersen and Bollerslev [12] first
used high-frequency data to propose a new method of measuring
volatility (i.e., realized volatility, RV). Compared with GARCH-
type and SV-type models, realized volatility has two main
advantages. On the one hand, it is based on model-free measures
and can be calculated directly. On the other hand, realized
volatility is computed using high-frequency transaction data,
which contain more fluctuation information. Thus, it is a more
accurate proxy variable for volatility risk in financial markets.
Many studies (see, e.g., [30,31,32]) have therefore used realized
volatility to measure volatility risk. Therefore, we choose realized
volatility to measure the volatility risk of crude oil futures.

Daily realized volatility can be written as

RVd0
t0 ¼

XN
i¼1

r2t0 ;i ð1Þ

where rt0 ;i is the ith return (i = 1, . . . , N) in day t0, i.e.,
rt0 ;i ¼ 100ðln Pt0 ;i � ln Pt0 ;i�1Þ. Pt0 ;i is the ith closing price in day t0.

However, Eq. (1) does not consider the overnight return vari-
ance, and it is not the consistency estimation of integrated volatil-
ity [33]. Therefore, following Andersen et al. [34], Gong et al. [35]
and Huang et al. [36], we obtain the new daily realized volatility.
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RVd
t0 ¼ RVd0

t þ r2t0 ;n ¼
XM
j¼1

r2t0 ;j ð2Þ

where rt0 ;n is the overnight return.
Corsi [37] used average realized volatility between day t0 and

t0 þ H (where H is the number of days in a month) to measure
monthly realized volatility. Following Corsi [37], monthly volatility
risk VRt is defined as

VRt ¼ RVm
t ¼ RVd

t0 ;1 þ RVd
t0 ;2 þ � � � þ RVd

t0 ;H

H
ð3Þ
3.2. Downside risk

Downside risk in financial markets cannot be observed. Down-
side variance (see, e.g., [38,39]), downside deviation (see, e.g., [38]),
gain-confidence limit (see, e.g., [40]), downside beta (see, e.g.,
[41,42]), shortfall probability [43], value at risk (VaR; see, e.g.,
[44,45]), expected shortfall (see, e.g., [43,46,47]), and downside
realized semivariance (see, e.g., [13,48]) are used as a proxy for
downside risk. Unlike other proxies, downside realized semivari-
ance is computed based on high-frequency data, which contains
more information and is more accurate for measuring downside
risk. Therefore, we apply downside realized semivariance as a
proxy for downside risk in the crude oil futures market.

Referring to Barndorff-Nielsen et al. [13], on the basis of Eq. (2),
downside realized semivariance (RSV�) can be expressed as

RSV�
t0 ¼

XM
j¼1

r2t0 ;jIðrt0 ;j 6 0Þ ð4Þ

where Ið�Þ is the indicator function taking the value 1 if the argu-
ment I is true. In this paper, we use monthly downside realized
semivariance to measure monthly downside risk. Thus, we obtain
the expression for monthly downside risk (DRt)

DRt ¼ RSV�ðmÞ
t ¼ RSV�ðdÞ

t0 ;1 þ RSV�ðdÞ
t0 ;2 þ � � � þ RSV�ðdÞ

t0 ;H

H
ð5Þ
3.3. Jump risk

We assume that the logarithmic price of crude oil futures
(pt0 ¼ lnðPt0 Þ) within the trading day follows a standard jump-
diffusion process

dpt0 ¼ lt0dt
0 þ rt0dWt0 þ jt0dqt0 ; 0 6 t0 6 T 0 ð6Þ

where lt0 is the drift term with a continuous variation sample
path. rt0 denotes a strictly positive stochastic volatility process.
Wt0 denotes a standard Brownian motion. jt0dqt0 is the pure
jump part.

For the discrete prices process, the log return volatility at time t
includes jump volatility and is not an unbiased estimator of inte-
grated volatility. The log return from t0 � 1 to t0 is quadratic
variation

QVt0 ¼
Z t0

t0�1
r2

s dsþ
X

t0�1<s6t0
j2

s ð7Þ

where
R t0

t0�1 r
2
s ds < 1 is an integrated variation and denotes the con-

tinuous component of the total variation.
P

t0�1<s6t0j2
s is the cumula-

tive jump variation in ½t0 � 1; t0�.
Andersen and Bollerslev [12] found that the quadratic variation

could not be observed directly and could be estimated based on

discrete data. When M ! 1, the daily realized volatility RVd
t0 can

be used as a consistent estimator of QVt0 .
RVd
t0 !M!1

QVt0 ¼
Z t0

t0�1
r2

s dsþ
X

t0�1<s6t0
j2

s ð8Þ

In addition, integrated volatility IVt can be estimated by the
realized bipower variation RBVt (see [49,50]). When M ! 1, real-

ized volatility RVd
t0 can be used as a consistent estimator of QVt0 .

RBVt0 can be used as a consistent estimator of the continuous sam-
ple path variation.

RBVt0 ¼ z�2
1

M
M � 2

XM
j�3

jrt0 ;j�2jjrt0 ;jj ð9Þ

where z1 ¼ EðZt0 Þ ¼
ffiffiffiffiffiffiffiffiffi
p=2

p
, Zt is a random variable that follows a

standard normal distribution. M=ðM � 2Þ denotes an adjustment
for sample size. According to Barndorff-Nielse and Shepherd
[49,50] and Huang and Tauchen [51], we use Z-statistics to identify
the discontinuous jump variation

Zt0 ¼ ðRVt0 � RBVt0 ÞRV�1
t0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl�4
1 þ 2l�2

1 � 5Þ 1
M max 1; RTQt0

RBV2
t0

� �s ! Nð0;1Þ ð10Þ

where l1 ¼ ffiffiffiffiffiffiffiffiffi
2=p

p
, RTQt0 is realized tri-power quarticity,

RTQt0 ¼ Ml�3
4=3

M
M�4

� �PM
j¼4jrt0 ;j�4j4=3jrt0 ;j�2j4=3jrt0 ;jj4=3, (l4=3 ¼ EðjZT j4=3Þ ¼

22=3Cð7=6ÞCð1=2Þ�1)

Daily discontinuous jump variation Jdt0 can be defined by

Jdt0 ¼ IðZt0 > /aÞðRVt0 � RBVt0 Þ ð11Þ
where Ið�Þ is an indicator function. a equals 0.99 (see [14,34]).

In this paper, we use monthly discontinuous jump variation to
measure the monthly jump risk of the crude oil futures market.
Similar to Eqs. (3) and (5), monthly jump risk can be written as

JRt ¼ J�ðmÞ
t ¼ Jdt0 ;1 þ Jdt0 ;2 þ � � � þ Jdt0 ;H

H
ð12Þ
4. Data description

The choice of sampling frequency of intraday high-frequency
data greatly influences the accuracy of the risk measure. On the
one hand, low sampling frequency does not adequately reflect
the volatility information of that day. On the other hand, high sam-
pling frequency may lead to microstructure noise. Therefore, fol-
lowing Clements and Todorova [52], Haugom et al. [53], Souček
and Todorova [54], Wen et al. [55], Žikeš and Baruník [56], we take
both influences into consideration and compute risk using the
widely used 5-min high-frequency transaction data from the
NYMEX-CME for the front-month WTI crude oil futures contract.
The full sample period is from January 1998 to April 2014, which
contains 196 monthly observations.

To demonstrate the properties of the monthly return and differ-
ent risk components, we provide a plot in Fig. 1. The figure shows
the dynamic dependencies in different components. The change
trends of volatility, downside and jump risks are almost the same.
Obviously, the volatility, downside and jump risks during the per-
iod from July 2008 to June 2009 are higher than those in other peri-
ods because the global financial crisis increased the price changes
in the crude oil futures market.

The resulting summary statistics are reported in Table 1. The
return of crude oil futures shows negative skewness and a fat tail,
and the volatility, downside and jump risks all have the property of
positive skewness and a fat tail. In addition, the Ljung-Box
Q-statistics reported in the table show that the volatility,
downside and jump risks of crude oil futures indicate significant
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Fig. 1. Monthly returns and three risk components for crude oil futures.

Table 1
Summary statistics for all variables.

Mean Std.Dev. Skewness Kurtosis Q(5) Q(10) Q(15) Q(20) t-statistic

Rt 0.8618 9.6718 �0.5114 4.6432 4.5950 13.845 31.709⁄⁄⁄ 35.016⁄⁄ �12.724⁄⁄⁄

VRt 4.9353 4.6107 3.7780 22.271 286.39⁄⁄⁄ 292.45⁄⁄⁄ 292.56⁄⁄⁄ 293.45⁄⁄⁄ �4.7833⁄⁄⁄

DRt 2.4966 2.1937 2.8440 13.076 276.00⁄⁄⁄ 285.57⁄⁄⁄ 287.19⁄⁄⁄ 289.39⁄⁄⁄ �4.7900⁄⁄⁄

JRt 0.6910 1.2687 5.4728 43.949 52.684⁄⁄⁄ 54.863⁄⁄⁄ 58.248⁄⁄⁄ 66.080⁄⁄⁄ �9.3837⁄⁄⁄

Note: Asterisks indicate statistical significance at the 5% (⁄⁄) or 1% (⁄⁄⁄) level.
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dependencies. According to the t-statistics, we find that all
variables refuse the null hypothesis that there is a unit root.

5. Contemporaneous relation between risk and return

5.1. Econometric model

We investigate the contemporaneous risk-return relationship in
the crude oil futures market. The econometric model that we ana-
lyze the contemporaneous risk-return relationship at the monthly
frequency is written as follows:

Rt ¼ aþ bXt þ et ð13Þ
where Rt is the monthly return of crude oil futures. Xt represents
VRt , DRt or JRt . VRt is the monthly volatility risk as defined in Eq.
(3). DRt is the monthly downside risk as defined in Eq. (5); and JRt

is the monthly jump risk as defined in Eq. (12). b is a slope coeffi-
cient. A positive value for b implies that the return of crude oil
futures is higher as the risk level for the market increases. However,
a negative value for b indicates that the return is lower as the risk
level for the crude oil futures market increases.

5.2. Empirical results

Table 2 presents the parameter estimates of Eq. (13). For volatil-
ity risk, b is negative and statistically significant, which shows that
the return of crude oil futures is lower as the volatility risk level of
the market increases. This is consistent with results reported in
Kristoufek [9], Chatrath et al. [10], etc. For downside risk, we
observe that b is significantly negative. This result indicates that
the contemporaneous downside risk-return relationship is nega-
tive in the crude oil futures market. Similarly, the result of Column
6 implies that the contemporaneous relation between jump risk
and returns on crude oil futures is negative and statistically signif-
icant. In addition, comparing the coefficient and t-statistic of all b,
we find that the contemporaneous negative relation between
downside risk and return is stronger than the other two.

To analyze the reason why the contemporaneous relationship
between the risk and return of crude oil futures is significantly
negative, we propose a new model.

Rt ¼ aþ b1Xt þ b2DtXt þ et; ð14Þ

where Dt is a dummy variable, Dt ¼ IðRt < 0Þ.
Table 3 reports the estimation results for Eq. (14). In this table,

all b1 are significantly positive, but all b2 are significantly negative.
Moreover, the absolute values of b2 are obviously larger than b1.
The above results show that negative returns produce higher
volatility, downside and jump risks than positive return. Thus,
the contemporaneous relationship between risk and return is
asymmetric, and this asymmetric effect bring about the result that
the contemporaneous relationship between the risk and return of
crude oil futures is negative.



Table 3
Estimated results of Eq. (14).

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a 0.3460 0.4663 1.2237⁄ 1.6661 �0.0133 �0.0181
b1 1.2395⁄⁄⁄ 7.2593 2.2573⁄⁄⁄ 6.4910 6.3526⁄⁄⁄ 5.4486
b2 �2.1829⁄⁄⁄ �13.6442 �4.4634⁄⁄⁄ �14.1406 �8.5622⁄⁄⁄ �7.2310

Adj: R2 0.5305 0.5790 0.2293

Note: Asterisks indicate statistical significance at the 10% (⁄) or 1% (⁄⁄⁄) level.

Table 2
Estimated results for the contemporaneous risk-return relationship.

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a 3.9182⁄⁄⁄ 4.0365 5.1466⁄⁄⁄ 5.3171 1.7828⁄⁄ 2.2945
b �0.6193⁄⁄⁄ �4.3039 �1.7163⁄⁄⁄ �5.8863 �1.3329⁄⁄ �2.4734

Adj: R2 0.0825 0.1472 0.0256

Note: Asterisks indicate statistical significance at the 5% (⁄⁄) or 1% (⁄⁄⁄) level.
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5.3. Robustness test

5.3.1. Sub-samples
To test the robustness of results in Table 2, we use sub-samples

to estimate Eq. (13). We divide the full sample into two sub-
samples, sub-sample 1 with 98 items of data from January 1998
to February 2006 and sub-sample 2 with 98 data from March
2006 to April 2014. The estimated results are presented in Tables
4 and 5. In Table 4, all values of b are negative and statistically sig-
nificant, which is consistent with the results of the full sample. This
shows that the contemporaneous relation between risk (i.e.,
volatility, downside and jump risks) and return is negative. In
Table 5, the results indicate that the contemporaneous volatility
risk-return relationship and downside risk-return relationship
are negative and statistically significant in the crude oil futures
market. However, the contemporaneous jump risk-return relation-
ship is negative and insignificant, which shows that the contempo-
raneous relationship between jump risk and return is weak in
sub-sample 2. In addition, the results also show that the contem-
poraneous negative relation between downside risk and return is
stronger. These findings are similar to those in Section 5.2. Thus,
the results of Eq. (13) are robust under different samples, which
provide further evidence that the contemporaneous risk-return
relationship is negative.

5.3.2. Different proxy variables
In this section, we choose other proxy variables to measure the

monthly volatility, downside and jump risks. Following [57] [58],
monthly volatility risk is measured by the GARCH (1,1) model.
The GARCH (1,1) model can be written as follows:

Rt ¼ lt�1 þ et; ð15Þ

et ¼
ffiffiffiffiffi
ht

p
� tt; ð16Þ

ht ¼ xþ nie2t�1 þ h1ht�1 ð17Þ
where ht represents the monthly volatility risk of crude oil futures.

Barndorff-Nielsen et al. [13] applied the daily downside realized
semivariance as a proxy of daily downside risk. The daily downside
realized semivariance is determined by summing the high-
frequency intradaily squared negative returns of the day. Thus,
we argue that monthly downside risk can be measured by the
sum of daily negative returns of the month. It can be written in
the following form:

DRt ¼ 1
H

XH
i¼1

½Rd
t;iIðRd

t;i 6 0Þ�2 ð18Þ

where H is the number of days in the tth month; Rd
t;i is the ith daily

return of crude oil futures in month t; and Ið�Þ is the indicator
function.

Tauchen and Zhou [59] and Zhang et al. [60] indicated that
jump frequency can be used to measure jump risk in financial mar-
kets. Thus, following Tauchen and Zhou [59] and Zhang et al. [60],
we define jump frequency as a proxy variable of monthly jump
risk, which is written as follows.

JRt ¼
1
H

XH
i¼1

½1� IðJdt;i > 0Þ� ð19Þ

where Jdt;i is the ith daily discontinuous jump variation of crude oil
futures at month t.

Table 6 reports the estimated results for the contemporaneous
relation between risk and return in the crude oil futures market.
In this table, b for each risk is significantly negative, which shows
that the return is lower as the volatility, downside or jump risk
level for the crude oil futures market increases. Moreover, the table
shows that the contemporaneous negative relation between down-
side risk and return is stronger than the other two, which is consis-
tent with the results in Section 5.2. Therefore, the results of Eq. (13)
are robust when using different proxy variables to measure volatil-
ity risk, downside risk, and jump risk.

Based on the empirical results in Section 5.2 and the robustness
test results in Section 5.3, we reach the conclusion that the con-
temporaneous relation between risk (volatility risk, downside risk
or jump risk) and return in the crude oil futures market is negative
and statistically significant. The results suggest the failure of the
risk-return tradeoff in the crude oil futures market, which is simi-
lar to other studies on the contemporaneous risk-return tradeoff;
see, e.g. Chiarella et al. [11] for one such study. In addition, the con-
temporaneous negative relation between downside risk and return
is stronger than downside risk and jump risk.



Table 4
Estimated results for the contemporaneous risk-return relationship under sub-samples 1.

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a 6.8647⁄⁄⁄ 3.1498 8.2224⁄⁄⁄ 4.3422 3.4291⁄⁄⁄ 2.6757
b �1.0012⁄⁄⁄ �2.8895 �2.3651⁄⁄⁄ �4.2410 �2.3406⁄⁄⁄ �2.6603

Adj: R2 0.0704 0.1490 0.0590

Note: Asterisks indicate statistical significance at the 1% (⁄⁄⁄) level.

Table 5
Estimated results for the contemporaneous risk-return relationship under sub-samples 2.

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a 2.8784⁄⁄ 2.6016 3.7502⁄⁄⁄ 3.4002 0.8663 0.8719
b �0.5622⁄⁄⁄ �3.6446 �1.5991⁄⁄⁄ �4.7006 �0.8430 �1.2160

Adj: R2 0.1124 0.1786 0.0048

Note: Asterisks indicate statistical significance at the 5% (⁄⁄) or 1% (⁄⁄⁄) level.

Table 6
Estimated results for the contemporaneous risk-return relationship using other proxy variables.

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a 1.3904 0.9083 5.0929⁄⁄⁄ 6.8586 1.7828⁄⁄ 2.2945
b �0.7020⁄⁄⁄ �10.781 �1.7744⁄⁄⁄ �9.1143 �1.3329⁄⁄ �2.4734

Adj: R2 0.0144 0.2962 0.0256

Note: Asterisks indicate statistical significance at the 5% (⁄⁄) or 1% (⁄⁄⁄) level.
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6. Intertemporal relation between risk and return

6.1. Econometric models

To investigate the intertemporal risk-return relationship, we
propose the following two econometric models.

Rt ¼ aþ bXt�1 þ et ð20Þ

Rt ¼ aþ bEtðXtÞ þ et ð21Þ
where Xt�1 is the lagged monthly volatility risk VRt�1, lagged
monthly downside risk DRt�1 or lagged monthly jump risk JRt�1.
EtðXtÞ denotes the predicted value of volatility risk, downside risk
or jump risk at time t. The predicted value is obtained by using
the AR(1), AR(3) or HAR(3) model.1

The AR(1) model is written as follows:

Xt ¼ aþ bXt�1 þ et ð22Þ
The AR(3) model is written as follows:

Xt ¼ aþ bXt�1 þ cXt�2 þ dXt�3 þ et ð23Þ
The HAR(3) model is written as follows:

�Yd
t0þ21 ¼ aþ bYd

t0�1 þ c�Yd
t0�5 þ d�Yd

t0�22 þ et0 ð24Þ

where �Yd
t0þ21 is the average volatility/downside/jump risk between

day t0 and t0 þ 21. If t0 is the first day of the tth month, �Yd
t0þ21 approx-

imately equals risk Xt as computed in Eq. (3), Eq. (5) or Eq. (12) at
time t. We extract all �Yd

t0þ21 at the first day of all months and obtain
1 The AR(1) model is the simplest time-series forecasting model. The HAR(3) mode
is a good risk forecasting model, and the AR(3) model is a match with the HAR(3
model, whose independent variable include three lag variables.
l
)

all predicted values of monthly risks. In addition, Yd
t0�1 is the daily

risk; �Yd
t0�5 ¼ ðYd

t0�1 þ Yd
t0�2 þ � � � þ Yd

t0�5Þ=5 is the weekly risk; and
�Yd
t0�22 ¼ ðYd

t0�1 þ Yd
t0�2 þ � � � þ Yd

t0�22Þ=22 is the monthly risk.
6.2. Empirical results

Table 7 reports the results for the intertemporal relation
between the risk and return of crude oil futures. The table indicates
that all b are negative, but they are non-significant. The results sug-
gest that the intertemporal risk-return relationship is weak in the
crude oil futures market.

In addition, we develop an econometric model on the basis of
Eq. (20) for explaining the results of Table 7.

Rt ¼ aþ b1Xt�1 þ b2DtXt�1 þ et ð25Þ

where Dt is a dummy variable, Dt ¼ IðRt < 0Þ.
Estimated results of Eq. (25) are reported in Table 8. All b1 are

significantly positive, but all b2 are significantly negative in this
table. We argue that the positive effect and negative effect cancel
each other out; as a result, the intertemporal risk-return relation-
ship is weak in the crude oil futures market.

Table 9 lists the results for the intertemporal risk-return rela-
tionship as defined in Eq. (21). The predicted values of risk EtðXtÞ
are obtained by using the rolling window prediction method. In
this section, five years are used as the rolling window length. That
is to say, the rolling window length for the AR(1) and AR(3) models
is 60, and that of the HAR(3) model is 1296. In Columns 3 and 7 of
Table 7, all b are not significant, which shows that both the
intertemporal volatility risk-return relationship and the intertem-
poral jump risk-return relationship are weak. In Column 5, b in
the AR(3) and HAR(3) models are negative and statistically signif-
icant. The results indicate there is a negative intertemporal relation



Table 9
Estimated results for the intertemporal risk-return relationship as defined in Eq. (21).

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

AR(1) a 1.5422 1.4867 2.1477 1.9066 0.6798 0.8196
b �0.1367 �1.0244 �0.5208 �1.6033 0.2174 0.7079

Adj: R2 0.0004 0.0115 �0.0037

AR(3) a 1.5448 1.5156 2.1696⁄⁄ 1.9837 0.7308 0.8931
b �0.1409 �1.0729 �0.5525⁄ �1.7271 0.1508 0.6043

Adj: R2 0.0011 0.0145 �0.0047

HAR(3) a 1.7721⁄ 1.6981 2.3797⁄⁄ 2.0948 0.5457 0.5907
b �0.1864 �1.3424 �0.6401⁄ �1.8549 0.4553 0.6494

Adj: R2 0.0059 0.0178 �0.0043

Note: Asterisks indicate statistical significance at the 10% (⁄) or 5% (⁄⁄) level.

Table 8
Estimated results of Eq. (25).

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a 1.5408⁄⁄ 1.9947 0.7127 0.9130 1.5478⁄⁄ 2.1361
b1 0.6731⁄⁄⁄ 5.0946 1.7860⁄⁄⁄ 6.1999 1.6711⁄⁄⁄ 2.9800
b2 �1.8947⁄⁄⁄ �12.0509 �3.9598⁄⁄⁄ �12.8307 �6.2925⁄⁄⁄ �6.5952

Adj: R2 0.4268 0.4602 0.1762

Note: Asterisks indicate statistical significance at the 5% (⁄⁄) or 1% (⁄⁄⁄) level.

Table 7
Estimated results for the intertemporal risk-return relationship as defined in Eq. (20).

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a 1.5128 1.4816 1.8531⁄ 1.7578 0.9133 1.1513
b �0.1271 �0.8417 �0.3869 �1.2215 �0.0438 �0.0798

Adj: R2 �0.0015 0.0025 �0.0051

Note: Asterisks indicate statistical significance at the 10% (⁄) level.
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between downside risk and expected return in the crude oil futures
market.

To account for the results in Table 9, we propose an econometric
model based on Eq. (21).

Rt ¼ aþ b1EtðXtÞ þ b2DtEtðXtÞ þ et ð26Þ
where Dt is a dummy variable and Dt ¼ IðRt < 0Þ.

Table 10 presents estimated results for Eq. (26). Most of b1 in
this table are positive and statistically significant. However, all b2

are negative and statistically significant. The values of b1 are smal-
ler than the absolute values of b2. If the negative effect is signifi-
cantly stronger than the positive effect, b in Table 9 are negative
and statistically significant. If the difference between the negative
effect and positive effect is non-significant, b in Table 9 are not sig-
nificant. Thus, b in the AR(3) and HAR(3) models are significantly
negative when testing the intertemporal relation between down-
side risk and expected return. However, in most cases, the
intertemporal relation between risk and expected return is weak.

6.3. Robustness test

6.3.1. Different samples
We use sub-samples 1 and 2 of Section 5.3.1 to test the robust-

ness of results in Table 7. The test results are presented in Tables
11 and 12. In these tables, all values of b are negative but statisti-
cally insignificant, indicating that the negative intertemporal rela-
tion between risk and expected return is very weak in the crude oil
futures market. The results are consistent with those of Table 7,
which suggests that the results of Eq. (20) are robust under differ-
ent samples.

As robustness tests, we use two years as the rolling window
length in this section. Table 13 reports the estimated results of
Eq. (21). The results are similar to those in Table 7. That is to say,
the intertemporal volatility/jump risk-return relationship is very
weak. However, the intertemporal relation between downside risk
and expected return is negative in the crude oil futures market. The
results are similar to those in Table 9, which shows the estimated
results of Eq. (21) are robust.

6.3.2. Different proxy variables
In this section, volatility risk is also measured by Eqs. (15)-(17);

downside risk is measured by Eq. (18), and jump risk is measured
by Eq. (19). Table 14 presents the estimated results of Eq. (20). In
this table, b of volatility risk and jump risk are statistically insignif-
icant, but b of downside risk is statistically significantly negative.
The results show that the intertemporal volatility/jump risk-
return relationship is weak and that the intertemporal downside
risk-return relationship is strongly negative in the crude oil futures
market. It furthermore indicates that the estimated results of Eq.
(20) are robust when using different proxy variables to measure
risk in the crude oil futures market.

The HAR(3) model cannot be estimated because of the proxy
variables. Thus, Table 15 only presents the results for the intertem-
poral risk-return relationship as defined in Eq. (21) of the AR(1)



Table 10
Estimated results of Eq. (26).

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

AR(1) a 1.2264 1.4679 �0.1040 �0.1186 4.9980⁄⁄⁄ 6.4995
b1 0.5343⁄⁄⁄ 4.0267 1.9970⁄⁄⁄ 5.7408 0.1294 0.5522
b2 �1.4139⁄⁄⁄ �8.6013 �3.6210⁄⁄⁄ �10.1755 �19.0296⁄⁄⁄ �9.8725

Adj: R2 0.0004 0.4400 0.4164

AR(3) a 1.2021 1.4290 �0.3156 �0.3545 5.5974⁄⁄⁄ 7.6196
b1 0.5160⁄⁄⁄ 3.8001 2.1145⁄⁄⁄ 5.6124 0.0204 0.1127
b2 �1.3500⁄⁄⁄ �8.0142 �3.5949⁄⁄⁄ �9.4225 �24.6513⁄⁄⁄ �11.1433

Adj: R2 0.3213 0.4046 0.4765

HAR(3) a 1.2720 1.5376 0.4487 0.5289 0.6731 0.7807
b1 0.5718⁄⁄⁄ 4.1332 1.8863⁄⁄⁄ 5.5038 2.3387⁄⁄⁄ 3.0267
b2 �1.4996⁄⁄⁄ �9.0098 �3.8797⁄⁄⁄ �10.8753 �5.3493⁄⁄⁄ �4.5782

Adj: R2 0.3780 0.4762 0.1259

Note: Asterisks indicate statistical significance at the 1% (⁄⁄⁄) level.

Table 11
Estimated results for the intertemporal risk-return relationship as defined in Eq. (20) under sub-samples 1.

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a 1.6037 0.6986 1.5246 0.7306 1.9159 1.433
b �0.0579 �0.1592 �0.0835 �0.1364 �0.6773 �0.7414

Adj: R2 �0.0103 �0.0103 �0.0047

Table 12
Estimated results for the intertemporal risk-return relationship as defined in Eq. (20) under sub-samples 2.

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a 1.1899 1.0100 1.7272 1.4261 0.3705 0.3700
b �0.1631 �0.9941 �0.6020 1.4261 0.2743 0.3911

Adj: R2 �0.0001 0.0163 �0.0088

Table 13
Estimated results for the intertemporal risk-return relationship as defined in Eq. (18) under the other rolling window length.

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

AR(1) a 2.0806 1.6316 1.5855 1.1495 0.4360 0.3686
b �0.2527 �1.2200 �0.3150 �0.6740 0.5303 0.3761

Adj: R2 0.0028 �0.0032 �0.0050

AR(3) a 2.2924⁄ 1.9438 2.2081⁄ 1.7941 0.4538 0.3839
b �0.3010 �1.5954 �0.5718 �1.4117 0.5029 0.3577

Adj: R2 0.0090 0.0058 �0.0051

HAR(3) a 1.8671⁄ 1.9049 2.6585⁄⁄ 2.4760 0.6831 0.8286
b �0.2125 �1.5941 �0.7452⁄⁄ �2.3059 0.1419 0.2619

Adj: R2 0.0089 0.0246 �0.0055

Note: Asterisks indicate statistical significance at the 10% (⁄) or 5% (⁄⁄) level.

Table 14
Estimated results for the intertemporal risk-return relationship as defined in Eq. (20) using other proxy variables.

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

a �0.1633 �0.0469 2.0384⁄⁄ 2.3097 0.9133 1.1513
b 0.1096 0.3068 �0.4826⁄⁄ �2.0909 �0.0438 �0.0798

Adj: R2 �0.0023 0.0171 �0.0051

Note: Asterisks indicate statistical significance at the 5% (⁄⁄) level.
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Table 15
Estimated results for the intertemporal risk-return relationship as defined in Eq. (21) using other proxy variables.

Volatility risk Downside risk Jump risk

Coefficient t-Statistic Coefficient t-Statistic Coefficient t-Statistic

AR(1) a 4.0024 0.9290 1.8568 1.4762 1.3863 1.5657
b �0.3288 �0.7434 �0.3121 �0.8179 �0.3616 �1.1028

Adj: R2 �0.0033 �0.0025 0.0016

AR(3) a 4.2539 0.9943 1.5005 1.2757 2.1696⁄⁄ 1.9837
b �0.3550 �0.8086 �0.1680 �0.4960 �0.5525⁄ �1.7271

Adj: R2 �0.0026 �0.0056 0.0145

Note: Asterisks indicate statistical significance at the 10% (⁄) or 5% (⁄⁄) level.
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and AR(3) models. The table shows that most values of b are statis-
tically insignificant, which indicates that the intertemporal relation
between risk and expected return of crude oil futures is weak. The
above results are similar to those in Table 9, which shows that the
results of Eq. (21) are robust under different proxy variables.

According to Sections 6.2 and 6.3, we find that the intertempo-
ral volatility/jump risk-return relationship is insignificant and that
there is little negative correlation between downside risk and
expected return in the crude oil futures market. The results are
robust when using different samples and different proxy variables,
which indicates the failure of intertemporal risk-return tradeoff in
the crude oil futures market.
7. Conclusion

We comprehensively investigate the contemporaneous risk-
return relationship and intertemporal risk-return relationship in
the crude oil futures market. In this paper, we use realized volatil-
ity as a measure of volatility risk, downside realized semivariance
as a measure of downside risk, and discontinuous jump variation
as a measure of jump risk. Then, we use a simple linear regression
model to examine the relation between volatility/downside/jump
risk and return by applying high-frequency transaction data from
the NYMEX-CME for the front-month WTI crude oil futures
contract.

We find that the contemporaneous relation between risk
(volatility risk, downside risk or jump risk) and return in the crude
oil futures market is statistically significantly negative. In addition,
the contemporaneous negative relation between downside risk
and return is stronger than the other two. However, the intertem-
poral volatility/jump risk-return relationship is insignificant, and
there is little negative correlation between downside risk and
expected return in the crude oil futures market. Moreover, we find
that the empirical results are robust across different samples and
different measures of volatility risk, downside risk and jump risk.
Our empirical results also demonstrate the failure of both contem-
poraneous and intertemporal risk-return tradeoffs in the crude oil
futures market. Further empirical analysis shows that the asym-
metric effect of risk on returns is an important reason that there
is no evidence of contemporaneous and intertemporal risk-return
tradeoffs.

The crude oil futures market is different from the stock market,
where market participants mainly buy assets and are risk averse.
However, the effect of buyers and sellers in the crude oil futures
market is relatively even. Investors do not exhibit risk aversion,
and the risk-return tradeoff fails in the crude oil futures market.
Our results suggest that market participants should take into
account the asymmetric effect factor when they seek to explain
and/or understand the return-risk relation in the crude oil futures
market. Additionally, the results can be utilized to enhance risk
management and portfolio diversification under uncertainty in
the current context of the crude oil futures market. When price
fluctuation (or market risk) is large in the crude oil futures market,
market participants should sell crude oil futures for rational
asset allocation.

In future work, we will investigate the risk-return relationship
in other energy markets based on high-frequency transaction data.
It will also be interesting to analyze the dynamic relationship
between risk and return and the economic underpinnings of a neg-
ative risk price in the crude oil futures market.
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