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Abstract
This study applies data envelopment analysis (DEA) to estimate the technical efficiency (TE) and CO2 emission reduction potential of
1270 coal-fired power plants in 28 Chinese provinces and municipalities. The large dataset used in the study includes 727 combined
heat and power (CHP) plants and 543 thermal power plants. Results show an average TE score of 0.57 for the CHP power plants and
0.58 for the thermal power plants, suggesting a significant potential to reduce coal consumption in both types of coal-fired plants. Total
CO2 emission reduction potential was estimated to be 953 Mt-CO2, or 19% of the total CO2 emissions of China’s electricity and heat
producing sectors, indicating that China’s coal-fired power plants have a significant potential to mitigate CO2 emissions through
technological improvement. In the second stage of the study, a Tobit regression analysis was conducted to identify the determinants of
TE. Factors such as the plant’s annual operation rate and capacity utilization rate were found to be significant influences. Based on our
results, we propose that the Chinese government create a power distribution structure that generates electricity using technologically
efficient equipment in areas rich in coal resources and distributes the generated electricity to other areas of the country.

Keywords Technical efficiency; .Coal-firedpower plant; .Data envelopment analysis; . Tobit regressionanalysis; .CO2; .China

Introduction

In 2015, China ranked as the world’s largest emitter of CO2,
accounting for 28% of global energy-originated CO2 emis-
sions (International Energy Agency 2020). Approximately
82% of China’s total CO2 emissions were attributable to coal
(International Energy Agency 2020). Chinese dependence on
coal in its power sector is particularly noteworthy, as approx-
imately 93% of the energy-originated CO2 emissions associ-
ated with the production and supply of the electric power,
steam, and hot water originates from coal consumption

(Shan et al. 2018). Coal-fired power generation is thus a major
source of CO2 emissions in China.

China has been a party to the Paris Agreement since 2015
and has worked to reduce the amount of territorial CO2 emis-
sions. However, the Chinese government announced in its 13th
5-Year Plan that it will continue to maintain a coal-based power
mix to meet the growing demand for electricity (Central
Compilation and Translation Press in China 2016). To mitigate
CO2 emissions from the country’s power sector, it will thus be
necessary to reduce coal consumption in the coal-fired power
generation process through technological improvements, while
maintaining the current level of electricity production. As a
crucial first step, the current level of efficiency in each of
China’s coal-fired power plants needs to be evaluated.

A number of previous studies have sought to evaluate tech-
nical efficiency (TE) or environmental efficiency (EE) in
China’s coal-fired power plants using both non-parametric
(e.g., data envelopment analysis (DEA)) and parametric
(e.g., stochastic frontier analysis (SFA)) frontier-based ap-
proaches (e.g., Yang and Pollitt 2009; Yang and Pollitt
2010; Zhao and Ma 2013; Wei et al. 2013; Zhang et al.
2014; Du and Mao 2015; Du et al. 2016; Long et al. 2018b;
Wang et al. 2019; Wei and Zhang 2020). However, these
studies are limited in four principal respects: (1) many of the
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studies use limited sample sizes due to a lack of data avail-
ability. Sample size is one of the most important factors in
statistical analysis. To the best of our knowledge, Du and
Mao (2015) used the largest single-year sample size (648
power plants in 2008); (2) in most of the existing studies,
the two types of coal-fired power plants in China (combined
heat and power (CHP) plants and thermal power plants) are
treated as homogeneous in their efficiency assessments; in
other studies, only thermal power plants are analyzed; (3)
studies that estimate the CO2 emission reduction potential of
Chinese coal-fired power plants based on TE or EE values
using the frontier-based approach are rare. Although Wei
et al. (2013), Du andMao (2015) and Du et al. (2016) estimate
potential reductions, their sample sizes are quite limited; and
(4) there are very few studies that identify the determinants of
estimated TE and EE in China’s coal-fired power plants.
Identifying the determinants of efficiency would seem essen-
tial to accurate decision making by policymakers and plant
managers seeking to improve efficiency. Lam and Shiu
(2001), Lam and Shiu (2004), Du and Mao (2015), and
Long et al. (2018b) are valuable studies that used regression
analysis to identify the determinants of efficiency in the sec-
ond stage of their analysis. However, these studies have clear
limitations, which will be discussed in more detail in the
“Literature review” section.

Recognizing the aforementioned problems, this study con-
ducts an extensive technical efficiency analysis of 1270
Chinese coal-fired power plants operating in 2011. We first
construct a plant-level, cross-sectional database that includes
three inputs (coal consumption, installed capacity, and the
electricity used in each power plant) and one output (the net
electricity produced by the plant) based on the China
Electricity Council’s 2015 Power Industry Statistics (China
Electricity Council 2015). The DEA approach is then used
to estimate the TE and CO2 emissions reduction potential of

the coal-fired power plants included in the study (727 CHP
plants and 543 thermal power plants across 28 Chinese prov-
inces and municipalities). In the second stage of the analysis,
we use a Tobit regression approach to identify the determi-
nants of TE and propose policy measures to improve plant TE
and mitigate CO2 emissions. The principal aim of our study is
to provide reliable and crucial information for policymakers
seeking to improve TE and mitigate the CO2 emissions of
China’s coal-fired power plants through technological im-
provements. The study’s research framework is summarized
in Fig. 1.

The remainder of the paper is organized as follows: the
“Literature review” section is a brief literature review, the
“Methodology” section describes the methodology, the
“Data” section explains the data used, the “Results” section
provides the empirical results of our efficiency analysis and
the estimated CO2 emissions reduction potential, the
“Discussion” section identifies the determinants of technical
inefficiency, and the “Conclusion and policy implications”
section concludes the paper and outlines the study’s policy
implications.

Literature review

In recent years, a number of studies have used the frontier-
based approach to assess the technical, operational, manage-
rial, and environmental efficiency of China’s thermal power
generation sector at the provincial level (Lam and Shiu 2001;
Lam and Shiu 2004; Kaneko et al. 2010; Zhou et al. 2013; Lin
and Yang 2014; Bi et al. 2014; Duan et al. 2016; Yan et al.
2017; Sun et al. 2018) or at the plant level (e.g., Yang and
Pollitt 2009; Yang and Pollitt 2010; Zhao and Ma 2013; Wei
et al. 2013; Zhang et al. 2014; Du and Mao 2015; Du et al.
2016; Long et al. 2018b; Wu et al. 2019; Wei and Zhang

Construct input-output datasets for 
two types of coal-fired power plants in 

China

Es�mate technical efficiency scores 
and CO2 emissions reduc�on 

poten�als according to DEA model

Iden�fy the determinants of technical 
efficiency in second stage Tobit 

regression analysis

DEA (VRS) model: Eq. (1)
Technical efficiency scores: Eq. (2) 
CO2 emissions reduc�on poten�als: Eq. (4)
>>Table 4 and Figures 3, 4, and 5
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Fig. 1 Research framework
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2020; Nakaishi 2021). Some studies have focused on estimat-
ing the EE of Chinese coal-fired power plants (e.g., Yang and
Pollitt 2009; Yang and Pollitt 2010; Zhang et al. 2014; Long
et al. 2018b), while others have sought to estimate the mar-
ginal abatement costs (MAC) of environmental pollutants
(e.g., Kaneko et al. 2010; Wei et al. 2013; Du and Mao
2015; Du et al. 2016; Wei and Zhang 2020; Nakaishi 2021).
Many of these studies discuss how to effectively reduce CO2

emissions from Chinese coal-fired power plants based on EE
and MAC estimates. However, few studies have focused on
identifying the set of determinants that directly influence the
TE of China’s coal-fired power plants.

Table 1 summarizes the efficiency assessment method, the
decisionmaking units (DMUs), the study period, the input and
output, and the dependent and independent variables in five
related studies (Lam and Shiu 2001; Lam and Shiu 2004; Du
and Mao 2015; Long et al. 2018b; Wu et al. 2019) that used
the frontier-based approach to analyze the efficiency of
China's thermal power sector and subsequently identified the
determinants of TE and EE using regression analysis1.

Lam and Shiu (2001) measured, at the provincial level, the
TE of thermal power generation in 30 Chinese provinces in
1995 and 1996 using the variable returns to scale (VRS) mod-
el of DEA and found that the TE in municipalities and prov-
inces along the eastern coast of China and in coal-rich areas
tended to be higher than the TE in other areas. They also
conducted a second stage Tobit regression analysis to identify
the determinants of TE and found that fuel use per kWh of
electricity (i.e., the FUEL factor) and the ratio of average load
to peak load (i.e., the LOAD factor) significantly affected TE.
They also found that the provinces and autonomous regions
that were not under the control of the state power corporation
(i.e., the SPC factor) achieved higher levels of TE and that the
presence of foreign investment (i.e., the FOREIGN factor) did
not have a significant effect on TE.

Lam and Shiu (2004) is an extension of the earlier study by
Lam and Shiu (2001). The data used in this follow-up study
were expanded to include time series data from 1995 to 2000.
The study examined the TE and total factor productivity (TFP)
growth of China’s thermal power generation industry in 30
provinces using the DEA approach and DEA-like linear pro-
grams. Notably, it was found that municipalities and coastal

provinces achieved higher TE and TFP growth during the
period under study. Furthermore, according to results from a
second stage regression analysis, it was determined that FUEL
(i.e., fuel use per kWh of electricity) and UTILIZATION (i.e.,
the ratio of average annual utilization hours of thermal power
generators to total hours in a year) were significant factors
influencing the TE of power generation.

Du and Mao (2015) estimated the EE, CO2 emissions re-
duction potential, and MAC of CO2 emissions for Chinese
coal-fired power plants using data for 518 (in 2004) and 640
(in 2008) coal-fired power plants and applying a directional
distance function (DDF)-based parametric linear program-
ming (PLP) approach. Their empirical results indicated sub-
stantial opportunities for CO2 emissions reduction. In addi-
tion, their second stage regression analysis showed that sub-
sidies from the government (i.e., SUBSIDY factor) can im-
prove EE, that the older (i.e., AGE factor) and larger (i.e.,
SCALE factor) power plants have a lower EE, and that the
ratio of coal consumption to fuel consumption (i.e., COAL
RATIO factor) negatively affects the EE of power plants.

Long et al. (2018b) investigated EE considering regional
heterogeneity for 192 power plants in the Yangtze River Delta
of China from 2009 to 2011 using a meta-frontier directional
slacks-based measure (SBM). They found that EE increased
from 2009 to 2010 and that coal consumption intensity (i.e.,
COAL INTENSITY factor) negatively impacted EE in their
second stage dynamic bootstrap truncation regression
analysis.

Wu et al. (2019) considered regional heterogeneity in their
investigation of EE at 528 thermal power stations in North
China from 2009 to 2011 using a meta-frontier epsilon-based
measure (EBM) and found that EE in plants in Beijing and
Tianjin was higher than that in other regions and was becom-
ing more divergent. In addition, the results of their second
stage bootstrap truncation regression analysis indicated that
coal consumption intensity (i.e., COAL INTENSITY factor)
negatively affected EE, larger scale (installed capacity above
600MW) power stations were more environmentally efficient
than smaller ones, and longer equipment utilization hours (i.e.,
UTILIZATION HOUR INTENSITY factor) could increase
EE.

Although these five studies are important insofar as they
identify some of the determinants of the efficiency score of
Chinese thermal power plants as evaluated by the DEA ap-
proach using the two-stage DEAmodel, they have limitations.
The data in Lam and Shiu (2001) and Lam and Shiu (2004) are
provincial-level data from 1995 to 2000. Du and Mao (2015)
used plant-level data, but the included plants account for only
47% (in 2004) and 55% (in 2008) of China’s total installed
capacity. Long et al. (2018b) and Wu et al. (2019) also used
plant-level data; however, the data covered only 192 plants in
three provinces and municipalities (Jiangsu, Zhejiang and
Shanghai) and 528 plants in six provinces and municipalities

1 Meta-frontier DEA analysis (O'Donnell et al., 2008) is another method that
differs from the combined use of DEA analysis and regression analysis to
identify the sources of technical inefficiency. For example, Eguchi et al.
(2021) applied meta-frontier DEA analysis to three years of input-output data
for a number of Chinese power plants (567 plants in 2009, 569 plants in 2010,
and 507 plants in 2011) and decomposed the sources of technical inefficiency
into regional inefficiency and scale inefficiency. However, meta-frontier DEA
analysis is not suitable for identifying multiple determinants, as in this study,
as it may lose the robustness of the DEA results due to a decrease in sample
size (Eguchi et al. 2021). The combined approach of DEA analysis and re-
gression analysis allows us to test the statistical significance of the analysis
results.
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(Beijing, Tianjin, Hebei, Inner Mongolia, Shandong, and
Shanxi), respectively.

Several features of our study define its novelty: First, the
dataset is, to the best of our knowledge, the largest plant-level
dataset among all related studies. With data for 1270 power
plants, it is nearly twice as large as the dataset used by Du and
Mao (2015), the largest among the previous studies (648 pow-
er plants in 2008), and accounts for 71% of the total installed
capacity of China in 2011. Consequently, our study is able to
provide more reliable and more detailed information for
policymakers seeking to improve TE and mitigate the CO2

emissions from China’s coal-fired power plants through tech-
nological improvements.

Second, to the best of our knowledge, our study is the first
to evaluate separately the TE of both types of coal-fired plants
operating in China—CHP plants and thermal power plants.
To date, few studies have evaluated the TE of China’s CHP
plants. Distinguishing between the two groups makes the
technical performance of electricity production within each
group more comparable (Zhou et al. 2012). Furthermore, if
there are indeed significant technology differences between
the two types of plants, any efficiency analysis performed
without considering such heterogeneity would be subject to
significant bias. Our study is likely the first to provide infor-
mation on the TE and CO2 emissions reduction potential of
CHP power plants in China.

Third, our study can be regarded as an extension of the
literature having a similar research framework, namely, Lam
and Shiu (2001) and Lam and Shiu (2004). The data used in
the present study’s empirical analysis are a decade newer and
more detailed at the plant level. By comparing the empirical
results of this study to the results of the earlier two studies, we
can see how the determinants of TE in China’s coal-fired
power sector changed over the ten-year period. The detailed
plant-level data used in this study can reveal not only differ-
ences in TE by region and province, but also differences in TE
by power plant. This will enable policy makers to more effec-
tively implement CO2 emission mitigation policies through
technological improvements, with a focus on potential TE
and CO2 emissions reduction at the detailed power plant level.

Methodology

Estimation of technical efficiency

As previously noted, we employ the non-parametric DEA
method to measure the TE of coal-fired power plants in
China. DEA is a mathematical programming method to assess
the relative efficiency of DMUs (Liu et al. 2010). DEA can
evaluate the relative efficiency of DMUs in a production pos-
sibility set considering the multiple inputs and outputs of the
DMUs and without preassigned weights or the need to specify

any functional form for the relationships between variables
(Thakur et al. 2006).

DEA models can be broadly divided into two types: a CRS
model based on an assumption of constant returns to scale
(Charnes et al. 1978) and a VRSmodel based on an assumption
of variable returns to scale (Banker et al. 1984). In this study,
the VRS model is employed, as the focus is on the electric
power industry, where a scale economyworks well empirically.

The DEA model can be applied with either an input orien-
tation or an output orientation (Lam and Shiu 2001). In China,
power companies can generate only the amount of electricity
allocated to the company. Therefore, the only way for a power
plant manager to improve the plant’s TE is to technologically
reduce unnecessary inputs (Song et al. 2015). For this reason,
we adopt the input-oriented DEA model, which minimizes
inputs while keeping output constant. Following Cook and
Zhu (2013), the input-oriented VRS model is given below:

min θm−ε ∑
I

i¼1
s−im þ ∑

J

j¼1
sþjm

 !
subject to

∑
N

n¼1
λnxin ¼ θmxim−s−im; i ¼ 1; 2;…; I

∑
N

n¼1
λnyjn ¼ yjm þ sþjm; j ¼ 1; 2;…; J

∑
N

n¼1
λn ¼ 1

λn; s−im; s
þ
jm≥0; n ¼ 1; 2;…;N

ð1Þ

where θm is the efficiency value of theDMUm; n is the number of
DMUs, assuming the existence of a total ofNDMUs; xim and yjm
indicate the ith input and jth output factors of DMUm, assuming
the existence of a total of I input and J output factors, respective-
ly; λn is an endogenously determinedweight assigned to all input
and output variables in Eq. (1); ε is an infinitesimal positive
number to make both the input and output coefficients positive;
and s−im and sþjm are non-negative slack variables for inputs and

outputs, respectively (Cook and Zhu 2013).
In addition, we define the efficiency score τm using the

following equation to reflect the value of input and output
slack in the efficiency score θm (Tsutsui 2001; Fukuyama
et al. 2011; Eguchi et al. 2015):

τm ¼ θm−
∑I

i¼1

s−im
xim

þ ∑ J
j¼1

sþjm
yjm

iþ j
ð2Þ

As noted, our study focuses on the TE of 1,270 coal fired
power plants in China. In Eq. (2), τm is interpreted as the TE of
power plant m. A τm of 1 indicates that power plant m is
relatively the most technologically efficient plant. Following
Liu et al. (2010), there are three inputs (installed capacity, coal
consumption, and electricity used by the coal-fired power
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plants) and one output (electricity generated by the coal-fired
power plants) in the dataset. Thus, in Eq. (1), I = 3 and J = 1.
Two types of plants are included: CHP plants and thermal
power plants. A CHP plant produces electricity and heat si-
multaneously, whereas a thermal power plant produces only
electricity. As the two types of power plants use different
technologies, it is important to evaluate TE in different pro-
duction possibility sets2. Accordingly, we constructed two
types of production possibility sets and DEAmodels. The first
model is the CHP model, where the number of DMUs is 727
(N = 727). The second model is the Thermal model,where the
number of DMUs is 543 (N = 543).

Estimation of CO2 emissions reduction potential

As in Cook and Zhu (2013), in the input-oriented DEAmodel,
an efficient DMU with outputs maintained at the current level
and which has no potential to reduce inputs is given an effi-
ciency score θ of 1. In other words, inefficient DMUs that
have some potential for reducing inputs are given non-
negative scores less than 1. In this study, the CO2 emission
reduction potential of each coal-fired power plant was estimat-
ed based on its estimated efficiency score. If a particular coal-
fired power plant m is identified as inefficient, its current coal
consumption xcoalm can be reduced by no more thanexcoalm ¼ θxcoalm . Thus, the reduction in coal consumption
resulting from the increased efficiency of a coal-fired power
plant can be calculated as Δxcoalm ¼ xcoalm − θxcoalm þ s−coal m

� �
.

Based on the Intergovernmental Panel on Climate Change
(IPCC) guidelines (IPCC 2006), CO2 emissionsQ (t-CO2) can
be calculated as

Q ¼ AD� NCV � CC � COF � 44

12
ð3Þ

where AD is coal consumption (10000t), NCV is net calorific
value (TJ/10000t), CC is carbon content (t-C/TJ), COF is the
oxidation rate (%), and 44

12 is the ratio of the mass of one carbon
atom combinedwith two oxygen atoms to themass of an oxygen
atom. Following Shan et al. (2018), in Eq. (2), we setNCV= 210,
CC = 26.32, and COF = 0.87. If the coal consumption of power
plant m can be reduced by an amount Δxcoalm ¼ xcoalm −
θxcoalm þ s−coal m
� �

by improving its TE, we can use Eq. (3) to

estimate RPCO2
m , the corresponding CO2 emissions reduction po-

tential at inefficient power plant m as follows:

RPCO2
m ¼ Δxcoalm ¼ xcoalm − θxcoalm þ s−coal m

� �� NCV � CC � COF � 44

12

ð4Þ

Data

To estimate the TE and CO2 emissions reduction potential of
the 1270 coal-fired power plants examined in our study, we
constructed a detailed cross-sectional dataset that included
three inputs (installed capacity, coal consumption, and elec-
tricity used) and one output (net electricity produced) at the
plant level from China’s 2014 Power Industry Statistics
(China Electricity Council2015). Several previous studies
(e.g., Yang and Pollitt 2009; Yang and Pollitt 2010; Zhang
et al. 2014; Long et al. 2015, 2017, 2018a) have estimated EE
based on the directional distance function approach (Chung
et al. 1997), each treating CO2 emissions as an undesirable
output. However, according to Eguchi et al. (2021), it is pref-
erable not to consider CO2 as an undesirable output since a
strong linear relationship between coal consumption and CO2

emissions will occur if the difference in coal quality at each
power plant is not taken into account. Since we were unable to
identify the types of coal used by the various power plants, we
first estimated the TE of each power plant and then calculated
the CO2 emission reduction potential via the IPCC calculation
method (Takayabu et al. 2019; Takayabu 2020).

Tables 2 and 3 show the summary statistics for the input
factors (installed capacity (MW), coal consumption (kt), and
electricity used (GWh) by the power plant) and the output
factor (net electricity produced (GWh) by the power plant)
of the CHP plants and thermal power plants, respectively. In
2014, there were nearly 2000 coal-fired power plants in 31
provinces in China (China Electricity Council 2015).
However due to a lack of data, we are unable to include all
of the power plants in this analysis. Nevertheless, our sample
accounts for 71% of the total installed capacity in China in
2011 (China Electricity Yearbook committee 2012).

Tables 2 and 3 give the summary statistics of the input and
output factors for different regions in China. As per Hu and
Wang (2006), the 28 provinces and municipalities of China
are divided into three major areas—EAST, CENTRAL, and
WEST (Fig. 2). Compared to other areas, the EAST is more
economically developed, while the CENTRAL area has sub-
stantially more coal sources.

Table 2 shows that there are many more CHP power plants
in the EAST, and that the thermal power plants are mostly
located in the EAST and CENTRAL areas. Based on the
average scale of the CHP plants, the CHP plants in the
WEST are relatively larger than the CHP plants in the other
areas, and the plants in the EAST are relatively smaller than
the CHP plants in the other areas. On the other hand, with
respect to the average scale of the thermal power plants, the
plants in the WEST are relatively smaller than the thermal
plants in the other areas, while the plants in the EAST are
relatively larger than the thermal plants in the other areas. A
comparison of the two types of plants reveals that the number
of CHP power plants is greater than the number of thermal

2 Although the produced heat from CHP power plants should be converted to
its electricity equivalent, heat supply data for each CHP plant were unavail-
able. To overcome this problem, Zhou et al. (2012) suggests that CHP and
thermal power plants should be evaluated at separate production frontiers.
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power plants, whereas the scale of thermal power plants is
much larger than the scale of CHP power plants.

Results

Efficiency analysis

Figures 3 and 4 are histograms showing the estimated
TE scores of the 728 CHP plants and 547 thermal

power plants, respectively. As can be seen here, there
is a comparatively wide disparity in the TE scores of
the CHP power plant group (Fig. 3), while the TE
scores of the thermal power group are fairly concentrat-
ed between 0.4 and 0.8 (Fig. 4).

We also find a wider gap in the relative TE scores of
the CHP power plants in the EAST (Fig. 3), while the
relative TE gap between the thermal power plants is
particularly higher in the CENTRAL and WEST areas
compared to the EAST (Fig. 4).

Table 2 Summary statistics for the 727 CHP power plants in China

Region Descriptive statistics Installed capacity (MW) Coal consumption (kt) Electricity used (GWh) Net electricity generated (GWh)

EAST Mean 100.70 239.89 34.41 440.28

SD 202.61 531.37 74.88 996.95

Minimum 3.00 0.56 0.08 0.93

Maximum 1730.00 3213.58 475.15 6608.48

CENTRAL Mean 260.42 701.25 91.83 1139.52

SD 284.21 835.65 112.49 1409.50

Minimum 6.00 2.47 0.61 4.00

Maximum 1200.00 4059.77 666.05 6989.71

WEST Mean 386.48 934.43 134.88 1878.27

SD 270.59 659.21 93.57 1488.32

Minimum 30.00 78.53 9.25 63.59

Maximum 929.00 2717.40 388.48 6309.42

ALL Mean 142.70 357.06 49.44 630.05

SD 237.38 646.87 89.08 1169.48

Minimum 3.00 0.56 0.08 0.93

Maximum 1730.00 4059.77 666.05 6989.71

Table 3 Summary statistics for
the 543 thermal power plants in
China

Region Descriptive
statistics

Installed
capacity (MW)

Coal
consumption
(kt)

Electricity used
(GWh)

Net electricity
generated (GWh)

EAST Mean 935.58 2397.38 289.90 5084.69

SD 839.53 2101.85 247.44 4792.26

Minimum 6.00 4.23 0.51 9.49

Maximum 4400.00 10840.73 1441.68 25617.26

CENTRAL Mean 737.51 1892.28 247.39 3600.45

SD 654.88 1883.66 215.06 3456.40

Minimum 6.00 1.07 0.10 0.72

Maximum 4800.00 15653.13 1268.74 28236.94

WEST Mean 724.88 2007.71 260.24 3380.71

SD 620.11 1646.57 216.01 3037.82

Minimum 12.00 25.97 1.90 17.10

Maximum 2475.00 6985.20 1285.81 15413.05

ALL Mean 817.47 2120.92 267.16 4178.64

SD 738.70 1955.48 230.02 4079.66

Minimum 6.00 1.07 0.10 0.72

Maximum 4800.00 15653.13 1441.68 28236.94

52070 Environ Sci Pollut Res  (2021) 28:52064–52081



Table 4 summarizes the results of our TE analysis. The
overall average TE score is 0.57 for the CHP plants and 0.58
for the thermal plants, indicating that the 727 CHP plants and
543 thermal plants have the potential to reduce inputs, includ-
ing coal input, by 43% and 42%, respectively, while maintain-
ing the current level of power production.

Lam and Shiu (2001) found that the efficiency scores for
the EAST and CENTRAL areas are higher than the efficiency
score for the WEST. However, in the current study, we found
that in the CHPmodel, the highest TE score was in theWEST
(0.68), followed by the CENTRAL (0.60) and EAST (0.56)
areas (Table 4). This result indicates that the conclusion in

Fig. 2 Map of Chinese provinces and regions. The blue, yellow, and red colors indicate the WEST, CENTRAL, and EAST areas respectively
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prior studies that power plants located in the EAST and
CENTRAL regions have higher TE scores does not hold for
CHP power plants. Our results in the thermal model were more
consistent with those reported in prior studies: the highest TE
score (0.63) was in the EAST, as in previous studies, followed
by the CENTRAL (0.57) and WEST (0.50) areas (Table 4).

In the CHP model, Hunan Province had the highest TE
score (0.85), followed by Guangdong Province (0.82), and
Beijing (0.80) (Table 4). Sichuan had the lowest score
(0.31), followed by Hebei (0.48), and Shandong (0.51). In
the thermal model, Jiangxi (0.92) and Hunan (0.85) had the
highest TE scores among the provinces and municipalities,
while Yunnan (0.45), Sichuan (0.46), Inner Mongolia (0.47),
and Hebei (0.48) had the lowest scores3.

Tables 7 and 8 in the Appendix list the power plants with
the highest TE scores (i.e., τ = 1) in the CHP and thermal
models. Most of these high-scoring plants are in the EAST
and CENTRAL areas. These plants form a production possi-
bility frontier in each of the DEA models. In order to improve
their TE, plants determined to be technically inefficient (i.e.,
τ ≤ 1) should refer to the practices of the more efficient plants.
Table S1 in Supporting Information provides the TE scores
for all the power plants included in the study.

CO2 emissions reduction potential

Table 4 also shows the value of the average (per plant) CO2

emissions reduction potential for each province/municipality
and each area calculated from the results of the TE analysis. If
the average TE of all the technically inefficient CHP and ther-
mal power plants in each province were raised to the level of

the plants with the highest efficiency scores listed in Tables 5
and 6, the CHP plants would achieve an average CO2 reduc-
tion of 178.25 kt; similarly, the thermal plants would achieve
an average CO2 reduction of 1516.14 kt. Based on these num-
bers, thermal power plants show substantially greater potential
to reduce CO2 emissions. The indication here is that the size of
the power plant has a material effect on its CO2 emissions
reduction potential (see Tables 2 and 3).

In the CHP model, the provinces/municipalities with the
highest average CO2 emissions reduction potential are
Guangxi (624.03 kt-CO2), Inner Mongolia (546.48 kt-CO2),
and Jilin (519.89 kt-CO2); in the thermal model, Yunnan
(3073.41 kt-CO2), Guizhou (2912.07 kt-CO2), and Inner
Mongolia (2441.98 kt-CO2) have the highest average poten-
tial. The provinces/municipalities with the lowest average
CO2 emissions reduction potential are Hunan (0.80 kt-CO2),
Zhejiang (39.87 kt-CO2), and Jiangsu (59.18 kt-CO2) in the
CHPmodel, and Jiangxi (11.29 kt-CO2) and Hunan (46.80) in
the thermal model. Note that the provinces with low TE scores
do not necessarily have large CO2 emissions reduction poten-
tial. If the efficiency assessment in the DEA framework is
used for environmental policy decisions, calculating the effi-
ciency score alone is insufficient; it is also important to esti-
mate the potential for reducing CO2 emissions.

The shaded map in Fig. 5 indicates the cumulative value of
CO2 emissions reduction potential by province. As shown
here, the cumulative value of CO2 emissions reduction poten-
tial in Inner Mongolia is 119,247.99 kt-CO2, which is signif-
icantly higher than the other provinces and municipalities.
Following Inner Mongolia, in descending order, are Shanxi
(96502.03 kt-CO2) and Shandong 80085.64 kt-CO2. Jiangxi
Province has the lowest CO2 emissions reduction potential,
most likely because of the small dataset. The total CO2 emis-
sions reduction potential of the 1270 plants is 953 Mt-CO2,
which accounts for approximately 19% of the total CO2
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3 The TE scores of Hunan and Sichuan provinces in the CHPmodel, as well as
Jiangxi province in the thermal model, should be interpreted with caution due
to the small dataset.
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emissions from China’s electricity and heat producing sector
in 2011 (International Energy Agency 2020). The provinces
and municipalities along the coast of China and north of the
Yangtze River tend to have a relatively high potential for
reducing CO2 emissions.

Tables 9 and 10 in the Appendix list the 10 power plants in
each model with the highest potential for reducing CO2 emis-
sions. In the CHP model, Fuxin Jinshan Coal Thermal Power
Co., Ltd. in Liaoning has the largest CO2 emissions reduction
potential (2759.27 kt-CO2). In the thermal model, Inner
Mongolia Huolinhe Hong Jun Aluminum Electric Company
has the largest reduction potential (7867.88 kt-CO2). Thus, the

thermal power plants show a relatively high CO2 emissions
reduction potential compared to the CHP power plants. In
both models, the power plants in Inner Mongolia and
Liaoning tend to have significant potential to reduce CO2

emissions. Table S1 in Supporting Information provides the
CO2 emissions reduction potential of all the power plants.

Discussion

To identify the determinants of the TE score produced by the
DEA model, we conducted a Tobit regression analysis using

Table 4 Average technical efficiency scores and average CO2 emissions reduction potential of CHP and thermal power plants in China

Region Province and municipality CHP power plants thermal power plants

Obs. TE CO2 emissions reduction
potential (kt-CO2)

Obs. TE CO2 emissions reduction
potential (kt-CO2)

EAST Beijing 5 0.80 302.50 0 - -

Tianjin 12 0.64 241.40 2 0.58 2330.49

Hebei 17 0.48 340.71 7 0.46 755.65

Liaoning 55 0.57 277.83 22 0.56 1870.53

Shanghai 4 0.76 91.41 11 0.73 979.46

Jiangsu 133 0.61 59.18 46 0.68 1376.99

Zhejiang 88 0.58 39.87 29 0.72 947.62

Fujian 7 0.46 97.64 11 0.66 1541.98

Shandong 223 0.51 101.90 44 0.60 1303.70

Guangdong 9 0.82 202.49 42 0.58 1430.36

Guangxi 1 0.69 624.03 9 0.57 1955.55

Hainan 0 - - 2 0.60 2079.22

Sub total 554 0.56 113.86 225 0.63 1372.70

CENTRAL Shanxi 13 0.56 375.76 49 0.49 1869.74

Inner Mongolia 35 0.66 546.48 41 0.47 2441.98

Jilin 29 0.59 519.89 4 0.53 1745.13

Heilongjiang 51 0.55 216.06 24 0.51 1026.64

Anhui 5 0.68 107.12 35 0.68 1200.60

Jiangxi 0 - - 3 0.92 11.29

Henan 16 0.63 438.31 40 0.58 1436.20

Hubei 0 - - 15 0.60 1475.46

Hunan 1 0.85 0.80 16 0.85 46.80

Sub total 150 0.60 384.38 227 0.57 1529.21

WEST Sichuan 1 0.31 96.02 14 0.46 1370.81

Guizhou 0 - - 17 0.48 2912.07

Yunnan 0 - - 12 0.45 3073.41

Shaanxi 7 0.68 457.81 25 0.50 1426.68

Gansu 9 0.69 449.12 7 0.57 2007.08

Qinghai 0 - - 2 0.49 1444.85

Xinjiang 6 0.74 251.36 14 0.54 649.63

Sub total 23 0.68 384.82 91 0.50 1838.22

Grand total 727 0.57 178.25 543 0.58 1516.14

Note: Obs. refers to observations; TE refers to technical efficiency
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the TE scores of the CHP model and the thermal model as the
dependent variable.

We assumed that the TE of a power plant is determined by
the following five factors (variables):

(1) HOUR: an independent variable indicating the annual
operating rate of the power plant obtained by dividing
the annual operating time of the plant by the total hours
in the year. In the second stage of the empirical study by
Lam and Shiu (2004), this variable proved to have a
significant effect on the provincial-level TE of the power
plants4.

(2) LOAD: an independent variable indicating the capacity
utilization ratio of the power plant, calculated as the av-
erage load of the power plant divided by the maximum
load of the plant. A similar independent variable was
used in Lam and Shiu (2001), where it was shown to
have a significant effect on provincial-level TE scores5.
Horii (2007) states that the stagnant growth in electricity
demand since 2008 due to the effects of the international
financial crisis may lead to excess capacity in the future.
Thus, if the two independent variables, HOUR and
LOAD, significantly affect the TE score of a power plant,
we can conclude that there is a problem of excess capac-
ity in China.

(3) FUEL: an independent variable indicating the quality of
coal and the amount of coal consumption (kt) required to
produce 1 GW of electricity. The empirical analyses by
Lam and Shiu (2001) and Lam and Shiu (2004) found
that this variable had a negative effect on the provincial
TE scores. Thus, if this variable is found to have a sig-
nificant effect on the TE score of a power plant, it can be
inferred that the quality of coal used in the electricity

generation process is an effective factor for improving
the TE of power plants.

(4) LARGE and MEDIUM: dummy variables intended to
account for differences in the size of power plants
in China. Based on the results of their empirical
study, Zhan et al. (2014), found that power plants
with greater installed capacity have higher TE
scores. Similarly, we anticipate that plant size will
affect the technical efficiency of both the CHP
power plants and the thermal power plants.
Following the definition used by the China
Electricity Yearbook committee (2018), LARGE in-
cludes plants with installed capacities of 1000 MW

Table 6 Estimation results from the Tobit regression analysis

Variable CHP model Thermal model

β0 (CONSTANT) −0.092* 0.218***

(−1.925) (3.822)

β1 (HOUR) 0.662*** 0.230***

(30.906) (6.151)

β2 (LOAD) 0.439*** 0.223***

(12.011) (4.590)

β3 (FUEL) −0.149*** −0.174***
(−9.578) (-7.474)

β4 (LARGE) 0.128*** 0.100***

(3.253) (6.711)

β5 (MEDIUM) 0.087*** 0.024

(5.005) (1.539)

β6 (EAST) 0.014 0.090***

(0.515) (5.222)

β7 (CENTRAL) 0.010 0.065***

(0.361) (3.851)

Log-likelihood −413.460 −278.424
N 727 543

Note: t-values for the independent variables are shown in parentheses.
Superscript *** represents significance at the 1% significance level.
Superscript * represents significance at the 10% significance level

4 In Lam and Shiu (2004), UTILIZATION, an independent variable similar to
HOUR in this study, was used in the regression model. UTILIZATION is
defined as the ratio of the average annual utilization hours of the thermal power
plants in each province to the total hours in a year.
5 In Lam and Shiu (2001), CAPACITY, an independent variable similar to
LOAD in this study, was used in the regression model. CAPACITY is defined
as the average load of thermal power plants in each province divided by the
average installed capacity in each province.

Table 5 Summary statistics for
the Tobit regression independent
variables

Plant
type

Descriptive
statistics

HOUR LOAD FUEL LARGE MEDIUM EAST CENTRAL

CHP Mean 0.45 0.98 0.57 0.02 0.09 0.76 0.21

SD 0.23 0.13 0.31 0.12 0.29 0.43 0.40

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Maximum 0.98 1.99 3.79 1.00 1.00 1.00 1.00

Thermal Mean 0.60 0.98 0.57 0.37 0.26 0.41 0.42

SD 0.16 0.12 0.28 0.48 0.44 0.49 0.49

Minimum 0.01 0.18 0.02 0.00 0.00 0.00 0.00

Maximum 0.96 1.81 2.92 1.00 1.00 1.00 1.00
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or more; MEDIUM includes plants with installed
capacities of 600 up to 1000 MW.

(5) EAST and CENTRAL: dummy variables indicting re-
gional productivity differences. As noted earlier, the
eastern region is more economically developed than
China’s other areas, while the central area is richer in coal
resources. Lam and Shiu (2001) concluded that the prov-
inces along the coast of China and around major coal-
producing areas have high TE scores, as these provinces
constituted the production frontier in their empirical study.
Du andMao (2015) also showed that the EE of the eastern
region is higher, whereas that of the western region is
lower. Following Du and Mao (2015), our study adopts
two dummy variables—EAST and CENTRAL—in order
to test whether these variables have a significant impact on
the CHP and thermal power plants.

The Tobit regressionmodels for the CHP and thermal pow-
er plants are

τ k ¼
1; τ*k ≥1

τ*k ¼ β0xk þ εk ; 0 < τ*k < 1
0; τ*k ≤0

8<: ð5Þ

where τk is the TE of power plant k, β is the parameter vector
estimated endogenously, xk is the set of independent variables

(i.e., HOUR, LOAD, FUEL, LARGE, MEDIUM, EAST, and
CENTRAL) for power plant k, and εk is the error term, with
εk~N(0, σ

2). The parameter vector β is estimated using max-
imum likelihood estimation (MLE) (see, e.g., Greene 2002).

Table 5 gives the summary statistics for the five indepen-
dent variables in our Tobit regression models. LOAD factors
of 1 or more are due to the fact the capacity data in our cross-
sectional dataset represent the capacity installed at the begin-
ning of the period for each plant. That is, the load factor may
be 1 or more as a result of a capacity increase from the begin-
ning to the end of the period. We recognize this as one of the
limitations of our research. In addition, a previous study had
conducted a regression analysis of efficiency score values
using dependent variables related to power plant ownership,
vintage, and the existence of subsidies (see Table 1).
However, this information was not available in our dataset,
which is another limitation of our study.

The results of our second-stage Tobit regression analysis
are reported in Table 6. Both theHOUR and LOAD factors are
shown to have a positive effect on the TE score of the power
plants in both models, which is nearly the same trend as in the
1995-2000 period observed in the provincial-level studies by
Lam and Shiu (2001) and Lam and Shiu (2004). In particular,
the HOUR and LOAD factors were shown to be more influ-
ential on TE in the CHPmodel than in the thermal model. This
is due to the fact that the annual operating rate and annual load

Guangxi

Guizhou

Hainan

Yunnan

Shanghai

Fujian

Guangdong

Xinjiang

Gansu

Heilongjiang

Hunan

Hubei

Jilin

Liaoning

Inner Mongolia

Qinghai
Shaanxi

Sichuan

Shanxi

Tibet

Henan

Shandong

Jiangsu

Jiangxi

Anhui

Zhejiang

Hebei

Beijing
Tianjin

Ningxia

no data

34~10000

10000~20000

20000~30000

30000~40000

40000~50000

50000~60000

60000~70000

70000~80000

80000~

Chongqing

(kt-CO2)

Fig. 5 Total CO2 emissions reduction potential in each province

52075Environ Sci Pollut Res  (2021) 28:52064–52081



rate of CHP plants are relatively lower than those of thermal
plants, and the variance of the two variables for the CHP
plants is higher (see Table 5). A comparison of the CHP plants
and thermal plants revealed that increasing the annual operat-
ing rate and annual load rate is particularly effective for im-
proving the TE score of CHP plants.

These two factors were shown to have a significant effect
on the TE score in both this study and in previous studies by
Lam and Shiu (2001, 2004), primarily because the power
supply and demand structure in China during the period
1995–2000, the period covered by Lam and Shiu (2001) and
Lam and Shiu (2004), is quite similar to the 2011 power sup-
ply and demand structure in China addressed in this study.
According to the data from IEA statistics ( 2020), the annual
growth rate of per capita electricity consumption in China
slowed in the latter half of the 1990s and the latter half of
the 2000s, especially in 1997 and 2011, when the rates were
only 1.04% and 1.12%, respectively. The sluggish demand for
electricity during these two periods caused excess capacity in
the entire Chinese power industry. As a result, the two factors
(HOUR and LOAD) were the main determinants of techno-
logical efficiency during both periods.

Although the FUEL factor had a statistically significant
effect on TE, it did not have a greater effect on TE than the
HOUR and LOAD factors. This result is consistent with the
results of the provincial-level empirical studies by Lam and
Shiu (2001) and Lam and Shiu (2004). Furthermore, this trend
was common to both the CHP and thermal models. The coef-
ficients of the LARGE andMEDIUM factors for both the CHP
and thermal models indicate that power plants with larger
installed capacity tend to have higher TE scores. However,
the impact of these two variables was considerably less than
expected, especially in the thermal model, where the
MEDIUM factor was not statistically significant.

Most unexpectedly, the regional dummy variable in the
CHP model had no statistically significant effect. In other
words, there were no regional TE differences for the CHP
power plants in China. On the other hand, in the thermal
model, the regional dummy variable is statistically significant,
although it does not have a substantial influence on TE. This is
consistent with the empirical results presented in Du and Mao
(2015). These results confirm the existence of technical het-
erogeneity between the CHP and thermal power plants in
China and support the importance of evaluating these two
types of power plants separately in efficiency analysis.

Conclusion and policy implications

We evaluated the TE of 1270 Chinese power plants,
distinguishing between CHP and thermal plants, using the
DEA framework. The average TE value in the CHP model
was found to be 0.57. In the thermal model, the average was

0.58. These values indicate that the 727 CHP power plants and
543 thermal power plants included in the study have the po-
tential to reduce inputs, including coal input, by 43% and
42%, respectively, while maintaining current power produc-
tion. Notably, in the CHP model, the WEST area had the
highest TE score (0.68), followed by the CENTRAL area
(0.60) and the EAST area (0.56), a result that differs from
the empirical results reported in Lam and Shiu (2001). Thus,
the general conclusion from these earlier studies—that power
plants located in the EAST and CENTRAL regions have
higher TE scores—does not hold for the case of CHP power
plants.

We also estimated the CO2 emissions reduction potential of
each type of plant based on the TE scores obtained by the
DEA. If the technical efficiencies of all the technically ineffi-
cient power plants improved to an achievable level, it is pos-
sible to reduce emissions by an average of 178.25 (kt-CO2) in
the CHP plants and 1516.14 (kt-CO2) in the thermal plants.
Thus, on average, the thermal power plants appear to have a
greater potential to reduce CO2 emissions relative to the po-
tential of the CHP plants. The estimated total CO2 emissions
reduction potential of the 1270 plants treated in this study is
953 Mt-CO2, which would account for approximately 19% of
total CO2 emissions from China’s electricity and heat produc-
tion sector in 2011 (International Energy Agency 2020).
These results indicate that China’s coal-fired power plants
have significant potential to mitigate CO2 emissions through
technological improvement.

Second-stage Tobit regression analysis was used to identify
the determinants of TE in China’s coal-fired power plants. It
was found that HOUR (the annual operation rate) and LOAD
(the capacity utilization rate) have the most influence on a
plant’s TE score. The FUEL, LARGE, and MEDIUM factors
have a lesser effect. The regional dummy variable in the CHP
model was not statistically significant, suggesting that there
are no regional TE differences among the CHP power plants
in China. The fact that this result is inconsistent with the em-
pirical results reported in Du and Mao (2015) highlights the
importance of evaluating the two types of power plants (i.e.,
CHP power plants and thermal power plants) separately when
analyzing efficiency.

This study has several important policy implications. As a
general recommendation, we propose that the Chinese gov-
ernment seek to mitigate the CO2 emissions derived from the
country’s coal-fired power plants through technological im-
provement. In formulating an appropriate policy, the govern-
ment should first prioritize the introduction of technological
improvements in power plants located in areas rich in coal
resources and decreasing the amount of coal consumption at
these plants. The two-step framework adopted in this study
should help identify the key factors in making such improve-
ments. Specifically, the plant manager can effectively improve
the efficiency of power generation through the use of clean
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coal technologies such as coal washing and by reconsidering
the use of boilers, turbines, and lighting equipment (Eguchi
et al. 2021). In addition, importing clean coal and coal lique-
faction technologies from countries such as Japan, which has
the world's highest level of coal-fired power generation tech-
nology, could be effective in improving the technical efficien-
cy of coal-fired power plants (International Energy Agency
Clean Coal Centre (IEACCC) 2016). Next, in areas where
coal resources are scarce, the government should reduce gen-
eration capacity, maintaining only the minimum capacity re-
quired. In actuality, the Chinese government is currently ad-
vocating a “promoting large and closing small” policy to reg-
ulate excess coal-fired power generation capacity (Zhang et al.
2014). Such a policy should be aggressively implemented,
especially in areas where coal resources are scarce. In the
formulation of such policy, the DEA framework methodology
used in this study to assess the relative TE of power plants
would provide a useful criterion when deciding which power
plants to close. Finally, the Chinese government should pro-
mote the current “West-East Electricity Transmission Project”

(i.e., producing electricity in coal-producing areas and trans-
mitting the generated electricity to urban areas) to broaden the
infrastructure of power distribution. Fully implementing these
three proposals would produce a power distribution structure
that generates electricity using technologically efficient equip-
ment in areas rich in coal resources and distributes it to other
areas of the country. In this way, it may be possible to achieve
the effective mitigation of CO2 emissions derived from
China’s coal-fired power plants through technological
improvements.

As mentioned in the “Data” section, we were not able to
identify the type of coal consumed by each power plant.
Therefore, we decided not to consider CO2 emissions as an
undesirable output in our DEA framework and the environ-
mental efficiency of each power plant was not estimated in our
study. This limitation could be overcome by combining the
input-output data used in this study (i.e., China Electricity
Council (2015)) with the CO2 emissions data (e.g., Tong
et al. (2018)), which considers the quality of coal for each
power plant. This is the future work for this study.

Appendix

Table 7 The 33 most efficient
CHP power plants in China Region Province and

municipality
Plant name

EAST Beijing Beijing Huaneng Thermal Power Co. Ltd.

EAST Guangdong Guangdong Hengyun D Power Plants

EAST Jiangsu Changshu No.13 Thermal Power Plant

EAST Jiangsu Huafang Thermal Power Plant

EAST Jiangsu Jiangyin Garden Thermal Power Plant (Shenghui)

EAST Jiangsu Jiangyin Kainuoke Thermal Power Plant (Hailan Group)

EAST Jiangsu Jiangyin Shuangliang Technology of Thermal Power Plant

EAST Jiangsu Lianyungang Tian Shen Thermal Power Co., Ltd.

EAST Jiangsu Nanjing Huarun Thermal Power Co., Ltd.

EAST Jiangsu Suzhou Huilong Thermal Power Co., Ltd.

EAST Jiangsu Thermal Power Plant in Suzhou Zixing Paper Company

EAST Shandong Shandong Chenguang Power Plant

EAST Shandong Shandong Jinan Shengquan Group Co., Ltd., Thermal Power Plant

EAST Shandong Shandong Jinhui Paper Co., Ltd. Thermal Power Plant Unit (Public)

EAST Shandong Shandong Laiwu Tagang Thermoelectric

EAST Shandong Shandong Qilu Petrochemical Company Thermal Power Plant

EAST Shandong Shandong Quelin Power Plant (Laiwu Taishan Sunshine)

EAST Shandong Shandong Taiyang Paper Thermal Power Plant # 4

EAST Shandong Shandong Zibo Jiaozhuang Power Plant

EAST Shandong Shandong Zibo Linzi Power Plant

EAST Shanghai Wujing Thermal Power Plant

EAST Tianjin Thermal Power Company of Tianjin Changluhaijing Group Co. Ltd.

EAST Tianjin Tianjin Huaneng Yangliu Thermal Power Co. Ltd.
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Table 7 (continued)
Region Province and

municipality
Plant name

EAST Zhejiang Zhejiang Tianma Thermal Power Co., Ltd.

EAST Zhejiang Zhejiang Shangyu Hangxie Thermal Power Co., Ltd.

EAST Zhejiang Zhejiang Hongshan Thermoelectricity Company

CENTRAL Anhui Anhui Masteel Tangcha Thermal Power Plant

CENTRAL Anhui Anhui Masteel Thermal Power Plant

CENTRAL Henan Henan Mianshan Power Plant

CENTRAL Jilin Jilin Guodian Jiangnan Thermoelectric Co., Ltd.

CENTRAL Jilin Jilin Oilfield Power Plant

CENTRAL Shanxi Shanxi Taiyuan Second Thermal Power Plant

WEST Gansu Gansu Jiayuguan Hongsheng Electric Co., Ltd.

Table 8 The 18 most efficient
thermal power plants in China Region Province and municipality Plant name

EAST Jiangsu Huaneng Nanjing Jinling Power Generation Co., Ltd. (Coal)

EAST Jiangsu Jiangyin Ligang Power Generation Co., Ltd.

EAST Liaoning Liaoning Wukuang Yingkou Zhongban Plant

EAST Liaoning Liaoning Yingkou Angang Bayujuan Power Plants

EAST Shandong Shandong Donga Jinhua Power Plant

EAST Zhejiang Zhejiang Guodian Beilun Third Power Generation Co., Ltd.

EAST Zhejiang Zhejiang Huaneng Yuhuan Power Plant

EAST Zhejiang Zhejiang Lanxi Xiexin Environmental Thermal Power Co., Ltd.

EAST Zhejiang Zhejiang Ningbo Zhengyuan Electric Power Company

CENTRAL Anhui Anhui Chuzhou Power Plant

CENTRAL Jiangxi Anyuan Power Plant of Jiangxi Anyuan Industry Co. Ltd.

CENTRAL Henan Henan Huayang Power Plant Phase Ii

CENTRAL Hunan Hunan Huadian Changsha Power Generation Co., Ltd.

CENTRAL Hunan Hunan Huaneng Yueyang Power Generation Co., Ltd.

CENTRAL Hunan Hunan Huarun Power Liyujiang Co., Ltd.

CENTRAL Inner Mongolia Inner Mongolia Datang Togtoh Power Generation Company

CENTRAL Shanxi Shanxi Jingle Power Plant

CENTRAL Shanxi Shanxi Quwo Welfare Power Plant
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