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Abstract

Standard panel models usually assume that data are available at the same frequency.
Occasionally, researchers might work with variables sampled at different frequencies. A
common practice is to aggregate all variables to the same frequency by an equal weighting
scheme. We show that such a simple aggregation scheme results in biases for common
estimators. We propose a data-driven method to determine weights for aggregation. We
further demonstrate that, in contrast with single-frequency panel models, the Mundlak
device and the Chamberlain’s approach lead to different estimators for panels with mixed
sampling frequencies. The proposed estimators have satisfying finite sample performances
in various simulation designs. As an empirical illustration, we apply the new method to the
estimation of the effects of temperature fluctuations on economic growth. The empirical
evidence shows that the temperature shocks mainly work through the level effect instead
of the growth effect for poor countries.

I. Introduction

A standard panel data model typically involves data that are sampled at the same frequency.
Many of the well-established methods are developed for balanced panel models. However,
as emphasized by Wansbeek and Kapteyn (1989), the incompleteness should be the rule
rather than exception for empirical researchers. Some recent progress has been made in
panel data models with missing observations. For example, Abrevaya (2019) considers
estimation of panel data models with missing dependent variables. Wooldridge (2019)
shows how to accommodate unbalanced panels within the correlated random effects
framework. Muris (2020) proposes an efficient GMM estimator with incomplete data.
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This paper considers panel data models with mixed sampling frequencies. Mixed
data sampling (henceforth MIDAS) could arise in various contexts. For example, many
macroeconomic data is available at quarterly or yearly frequencies while financial
samples are collected at substantially higher frequencies (daily, hourly). At first glance,
panel MIDAS models are similar to unbalanced panel models because the dependent
variable and the covariates are not perfectly matched. However, the panel MIDAS models
are fundamentally different from unbalanced panel models. The unbalanced panel arises
when some of the dependent variables and/or the covariates are missing. On the other
hand, there is no missing data problem in the MIDAS settings. The dependent variable
and the covariates are not synchronized simply because they are available at different
frequencies. For example, it is difficult or unreasonable to assign a country’s GDP of a
given quarter to a given day to match the daily financial data. The methods developed for
unbalanced panels are not directly applicable to our MIDAS settings.

The MIDAS is first introduced for time series regression models. Some recent papers
on time series models with MIDAS include Ghysels, Santa-Clara, and Valkanov (2006);
Ghysels, Sinko, and Valkanov (2007), Ghysels and Wright (2009) and Andreou, Ghysels,
and Kourtellos (2010) among others. See also Foroni and Marcellino (2013) for a
comprehensive survey of recent progress. Another strand of the literature is related to
temporal aggregation. Some seminal works include Sims (1971), Phillips (1972, 1974),
Hsiao (1979) and Granger (1987) among many others. The comparisons of these two
strands of the literatures can be found in Andreou et al. (2010).

The fixed effects estimator is one of the most popular estimators for empirical
researchers. With the presence of MIDAS, a simple strategy is to adopt a flat weighting
scheme, i.e. taking the simple arithmetic average of the high-frequency data up to the
low-frequency level. It is of practical interests to derive the conditions under which
the fixed effects estimator with a flat weighting scheme remains consistent. This partly
motivates our paper. We make use of the decomposition technique developed by Andreou
et al. (2010) to show that the equal weights aggregation scheme results in biases of the
fixed effects estimator except for some special cases. Thereupon, we propose a data-driven
method to assign aggregation weights to get consistent estimators.

A recent paper by Khalaf et al. (2021) studies the dynamic panel data model with
MIDAS. They extend the GMM methods of Anderson and Hsiao (1982) and Arellano and
Bond (1991) to dynamic panel models with MIDAS. The static model studied in our paper
can been seen as a special case of the dynamic model in Khalaf et al. (2021) where the
coefficient of the lagged dependent variable is set to zero. Their GMM estimator, utilizing
more moment conditions, is potentially more efficient than our estimator. However, as
will be seen later, our estimator is developed within a more general framework than theirs.
Another difference is that our paper attempts to extend the Mundlak and Chamberlain
approach to the panel MIDAS setting, which is not considered in Khalaf et al. (2021).

The Mundlak (1978) device has been a popular device to model the correlations between
the fixed effects and the explanatory variables. It assumes that the time averages of the
explanatory variables are good proxies of the individual fixed effects. Chamberlain (1982)
proposes another approach that is more flexible than the Mundlak device by projecting
the individual fixed effect onto the entire history of the explanatory variables. It is well
known (see, e.g. Wooldridge (2010, Chapter 10)) that the fixed effects estimator can be
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obtained by a pooled ordinary least squares (OLS) estimation of the original linear panel
model augmented by the time averages or the entire history of the explanatory variables.
We show that, when the true weights are unknown in the panel MIDAS model, this
equivalence result no longer holds for the use of Mundlak device but continues to be true
for the Chamberlain’s projection approach using high frequency series. To the best of our
knowledge, this finding is new for the panel MIDAS model.

As an empirical illustration, we revisit the paper of Dell, Jones, and Olken (2012),
which uses annual data to estimate the effects of temperature fluctuations within countries
on economic outcomes from 1950–2003. Conforming to the old idea that climate may
substantially influence the economic performance, they find that a 1◦C increase in annual
temperature reduces economic growth by 1.3 percentage points for poor countries. We
note that they use an equal weighting scheme to transform the high frequency weather
variables onto annual data. Yet, a 1◦C increase in warm days and a 1◦C increase in cold
days, by their nature, can have very different impacts on economic activities. Thus, such
a simple averaging strategy could lead to biased estimators. To tackle this issue, we use a
data-driven approach to rebuild the weather variation measurement from high-frequency
data instead of using simple annual averages. We re-examine various specifications of
Dell et al. (2012) using our new method. Our estimates are broadly consistent with Dell
et al. (2012) in the sense that the high temperature appears to reduce the economic growth
rates for poor countries, although the mechanism is different from their finding.

The rest of the paper is organized as follows. Section II sets up the model and shows that
the usual fixed effects estimator with an equal weighting scheme is generally inconsistent.
We propose a modified fixed effects estimator and derive its asymptotic properties.
Section III extends the Mundlak’s device and Chamberlain’s projection approach to the
panel MIDAS regression model. Section IV presents a small simulation study to investigate
the finite sample performance of the proposed estimators. An empirical application is
provided in section V. Section VI concludes the paper.

II. The fixed effects estimator of panel MIDAS models

A standard panel data model with an additive individual fixed effects is usually set up as

yit = xitβ
∗ + ci + uit, t = 1, ..., T; i = 1, ..., N (1)

where the dependent variable yit and the 1 × p vector of explanatory variables xit are
sampled at the same frequency. We are interested in estimating β∗ while allowing for
arbitrary correlations between the individual fixed effect ci and the explanatory variables
xit.

This paper focuses on the case where the explanatory variables are sampled at a
higher frequency than the dependent variables. Let x(t)

i = (
x(t)

i1/m, x(t)
i2/m, ..., x(t)

im/m

)
, a 1 × mp

vector, denote the m observations of the explanatory variables sampled between t − 1 and
t. 1 Define yi = (yi1, ..., yiT )′ and xi = (

x(1)
i , ..., x(T)

i

)
as the collection of all covariates of

1Here we implicitly assume that all covariates are sampled at the same frequency. This assumption can be relaxed
at the cost of complicating the notations without bringing us any new insights.

© 2023 Oxford University and John Wiley & Sons Ltd.
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individual i. The asymptotics of this paper will be derived assuming N → ∞ with T and
m fixed. We leave extensions of large T or large m to future work. Our first assumption
relates to the sampling process.

Assumption 1. (random sampling) (yi, xi, ci) is independently and identically
distributed (i.i.d) across i = 1, ..., N .

Note that Assumption 1 allows arbitrary temporal correlations of the covariates and
the idiosyncratic errors. For static panel models, it is also common to impose the strict
exogeneity assumption of the explanatory variables with respect to the idiosyncratic
errors. Our exogeneity assumption takes a different form as we are conditioning on the
high frequency explanatory variables instead of the aggregated variables.

Assumption 2. (strict exogeneity) E(uit|xi, ci) = 0 for t = 1, ..., T .

One might wonder if the above strict exogeneity assumption can be weakened by replacing
the high frequency covariates xi by the aggregated covariates. As to be shown later, we
need the high frequency strict exogeneity to ensure the identification of the underlying
parameters. While we impose the conditional mean independence between the explanatory
variables and the idiosyncratic errors, we do not restrict the dependences between the
covariates and the fixed effects, which is important in many empirical analysis. The true
generating process of the aggregated variable xit is characterized as follows.

Assumption 3. (true weighting schemes) For k = 1, ..., p, xk,it(α
∗
k ) = ∑m

j=1

a∗
jkx(t)

k,ij/m + εx
k,it, where α∗

k = (a∗
1k , ..., a∗

mk)
′ with

∑m
j=1 a∗

jk = 1, and εx
k,it is the stochastic

error such that E(εx
k,it|xi) = 0.

Assumption 3 specifies the regressors xit(α
∗) as the sum of a weighted average of the

m high frequency series and the stochastic error. The main results in this paper remain
unaltered if the number of high frequency series is larger than m. The normalization
assumption that

∑m
j=1 a∗

jk = 1 is imposed to give identification of β. Instead of using a flat
weighting scheme by setting ajk = 1

m for all j and k, we allow different regressors to have
different aggregation schemes. Given our fixed-T framework, a possible generalization of
the data generating process in assumption 3 is to make the weights specific to each period
so that the true aggregating schemes could vary across time. Here we choose not to make
such a generalization to avoid further notational complications.

An implicit constraint imposed by assumption 3 is that the aggregation schemes are
homogeneous across all individuals. This could be rather restrictive within the fixed effects
estimation framework as it imposes strong assumptions on the joint distribution of the
regressors and the unobserved heterogeneity.2 We note that the data generating process
of the aggregated variables can depend on the individual fixed effects by incorporating ci

in εx
k,it in an additive form, which is ultimately subsumed into the fixed effects in the main

regression model. In fact, our current framework can also accommodate the case that all
aggregation weights are unit-specific under the random effects assumption. Let

{
a∗

i,jk

}
j,k

be the weights associated with individual i, which can be further decomposed as a∗
i,jk =

2We thank an anonymous referee for pointing out this.

© 2023 Oxford University and John Wiley & Sons Ltd.
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a∗
jk + εa

i,jk with a∗
jk = E(a∗

i,jk). We assume that εa
i,jk is independent of all other variables.

Then xk,it(α
∗
k ) = ∑m

j=1 a∗
i,jkx(t)

k,ij/m + εx
k,it = ∑m

j=1 a∗
jkx(t)

k,ij/m + ∑m
j=1 εa

i,jkx(t)
k,ij/m + εx

k,it. It can

be easily verified that the new composed error
∑m

j=1 εa
i,jkx(t)

k,ij/m + εx
k,it is still mean

independent of all the high frequency covariates. Thus our assumption (3) can also
accommodate the case that the unit-specific weights are independent of all covariates.
Allowing more general unit-specific weights could be an interesting topic for future
researches.

From the above discussion we can see that our assumption 3 is more general than the
usual aggregation scheme in the literature. Our aggregation process allows for stochastic
errors as well as independent random weighting coefficients, while many other researches
are built on the deterministic weighting scheme (e.g. Ghysels et al. (2006) and Khalaf
et al. (2021)). Thus our estimator is developed within a more general framework than the
GMM estimator proposed by Khalaf et al. (2021).3

Let α∗ = (α∗′
1 , ..., α∗′

p )′. We can then rewrite equation (1) as

yit = xit(α
∗)β∗ + ci + uit, t = 1, ..., T; i = 1, ..., N (2)

Starting from equation (2), we let xit(α
∗) denote the linear combination of high frequency

regressors without the stochastic errors, which are subsumed into uit and/or ci. With
some algebra it can be shown that xit(α

∗) = x(t)
i A(α∗) where A(α∗) is a mp × p matrix

obtained by vertically stacking p × p diagonal matrices such as diag
{
a∗

j1, a∗
j2, ..., a∗

jp

}
for

j = 1, ..., m. Let xE
it be the explanatory variables generated by the equal weighting scheme,

i.e. ajk = 1
m for all j and k. If we run a fixed effects estimation for the following model

yit = xE
itβ

∗ + ci + uit + xB
itβ

∗, (3)

where xB
it = xit(α

∗) − xE
it is the omitted term resulted from using a misspecified weighting

scheme, the naive FE estimator with equal weights can be written as

β̂
E
FE =

(
N∑

i=1

T∑

t=1

ẍE′
it ẍE

it

)−1 (
N∑

i=1

T∑

t=1

ẍE′
it ÿit

)

=
(

N∑

i=1

X E′
i QT X E

i

)−1 (
N∑

i=1

X E′
i QT yi

)

, (4)

where ẍE
it = xE

it − T−1 ∑T
t=1 xE

it , X E
i is a T × p matrix stacked by xE

it , and QT is a
time-demeaning matrix that transforms xE

it into ẍE
it .

Applying the weak law of large numbers, we have plimβ̂
E
FE = β + (E[X E′

i QT X E
i ])−1

(E[X E′
i QT X B

i ]), where X B
i is a T × p matrix stacked by row vectors xB

it . Andreou
et al. (2010) obtain a similar result for the time series MIDAS regression model. We
extend their framework to the panel setting. While the bias term follows from the
standard omitted variable bias formula, there are two distinct features as pointed out by
Andreou et al. (2010). Firstly, the omitted variable xB

it has the same coefficient as the
regressor xE

it . Secondly, the omitted variable depends on the true weighting scheme α.

3It should be mentioned that the GMM estimator developed by Khalaf et al. (2021) can also accommodate the same
random weighting coefficients setting, but our paper is the first one to explicitly consider such generalizations.

© 2023 Oxford University and John Wiley & Sons Ltd.
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Estimation of panel data models 519

An immediate implication is that if the true weights are equal, then X B
i is a matrix of

zeros and there will be no bias for β̂
E
FE. Intuitively, if the true weights are close to equal

weights, the inconsistency of the usual FE estimator is small. A typical row of QT X B
i is

(xit(α
∗) − xi(α

∗)) − (
xE

it − xE
i

)
, where xi(α

∗) and xE
i are the sample averages of xit(α

∗)
and xE

it , respectively. This implies that if the fluctuations of the regressors around their
time averages under the true weighting scheme are the same as the deviations of the
regressors from their averages under the equal weights, the FE estimator based on equal
weights is consistent.

Remark 1. In the time series MIDAS model, when the high frequency regressors
x(t)

ij/m are i.i.d. across time, it is shown by Andreou et al. (2010) that the OLS estimator
with flat weighting scheme is consistent. Here we obtain a similar result for the fixed
effects estimator with i.i.d. high frequency regressors. Without loss of generality, consider
an i.i.d. sequence of scalar variables x(t)

ij/m with zero means and finite variance σ 2. Let
α∗ = (a∗

1, ..., a∗
m) be the true weights with the constraint that

∑m
j=1 a∗

j = 1. It follows that

E
(
X E

i QT X B
i

) =
T∑

t=1

E
[
ẍE

it

(
xit(α

∗) − xE
it

)]

=
T∑

t=1

E

⎡

⎣

⎛

⎝ 1

m

m∑

j=1

x(t)
ij/m − xE

i

⎞

⎠

⎛

⎝
m∑

j=1

(
a∗

j − 1

m

)
x(t)

ij/m

⎞

⎠

⎤

⎦

= 1

m

T∑

t=1

m∑

j=1

(
a∗

j − 1

m

)
E
(
x(t)2

ij/m

) +
T∑

t=1

m∑

j=1

(
a∗

j − 1

m

)
E
(
xE

i x(t)
ij/m

) = 0.

The above analysis indicates that the usual FE estimator of panel MIDAS model is
generally inconsistent except for some special cases. When m and p are small, we can
proceed to estimate (α′, β ′)′ by a fixed effects nonlinear least squares estimation (FE-NLS)
method.

(α̂FE−NLS , β̂FE−NLS) = argmin
α,β

N∑

i=1

(yi − Xi(α)β)′QT (yi − Xi(α)β)

s.t.
m∑

j=1

ajk = 1, for k = 1, 2, ..., p, (5)

where Xi(α) is a T × p matrix stacked by the row vector xit(α). We can easily transform the
above restricted NLS estimation to an unrestricted version by setting amk = 1 − ∑m−1

j=1 ajk .
Hereafter, we only consider the unrestricted minimization problem transformed from
equation (5). Define θ = (α′, β ′)′ and q(Wi; θ) = (yi − Xi(α)β)′QT (yi − Xi(α)β). We
summarize the asymptotic properties of the FE-NLS estimator by the following theorem.

Theorem 1. (Asymptotic properties of the FE-NLS estimator) For the panel MIDAS
model specified in equation (2), if assumptions (1)–(3) hold, � is compact, and θ∗ ∈ � is

© 2023 Oxford University and John Wiley & Sons Ltd.
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the unique minimizer of E[q(Wi; θ)], then θ̂FE−NLS = (α̂′
FE−NLS, β̂ ′

FE−NLS)
′ is consistent

for θ∗ = (α∗′
, β∗′

)′. In addition, if θ∗ is in the interior of �, B∗ = E[∇2
θq(W ; θ∗)] is

positive definite, and the gradient function ∇θq(W ; θ) has finite second moment, then as
N → ∞, √

N(θ̂FE−NLS − θ∗) d−→ Normal(0, B∗−1C∗B∗−1), (6)

where C∗ = E[∇θq(W ; θ∗)′∇θq(W ; θ∗)].

The proof of the above theorem follows directly from the standard results in the
literature (see, e.g. Wooldridge (2010, chapter 12)) and is thus omitted. The calculations
of the score functions and the Hessian matrix are left to the appendix. We note that
the asymptotic variance matrix B∗−1C∗B∗−1 is robust to arbitrary serial correlations and
heteroskedasticity of the composed error ci + uit. The above asymptotic variance formula
can also accommodate the case that there are stochastic errors in the aggregation process
as in assumption (3) because

{
εx

k,it

}p
k=1 are ultimately subsumed into the composed error.

Consistent estimates of the asymptotic variances can be obtained by calculating B̂ =
N−1 ∑N

i=1 ∇2
θq(Wi; θ̂FE−NLS) and Ĉ = N−1 ∑N

i=1 ∇θq(Wi; θ̂FE−NLS)
′∇θq(Wi; θ̂FE−NLS).

Following standard linear panel models, we refer to SEs obtained from B̂−1ĈB̂−1 as
‘cluster robust standard errors’.

With these SEs, a variety of statistics, such as the Wald statistic and the LM
statistic, can be constructed for hypothesis testing. One hypothesis that is of particular
interest is whether the aggregation weights are flat, i.e. a∗

jk = 1
m for all j and k.

Under the null that the true aggregation scheme is flat, the Wald statistic, formulated
as

(
α̂FE−NLS − 1

m ι(m−1)p
)′
(	̂α/N)−1

(
α̂FE−NLS − 1

m ι(m−1)p
)
, converges in distribution to

χ2
(m−1)p, where ιl is a l × 1 vector of unity and 	̂α is the consistent estimate of the

asymptotic variance of α̂FE−NLS. We note that the degrees of freedom are (m − 1)p
instead of mp because of the constraint that

∑m
j=1 ajk = 1 for all k = 1, ..., p.

Remark 2. The assumption that θ∗ is the unique minimizer of E[q(Wi; θ)], along
with other maintained assumptions, is a sufficient condition for the identification of
θ∗. The uniqueness of θ∗ turns out to be intrinsically related to the positive definite
property of B∗. Specifically, the assumption that B∗ is positive definite entails a rank
condition on the matrix of time demeaned high-frequency explainable variables as well as
a nonzero restriction for β. 4 As an illustrative example, consider the case where m = 2

and p = 1, θ = (a1, β1)
′ and q(wi, θ) = 1

2

∑T
t=1

[
ÿit − ẍ(t)

i1/2a1β1 − ẍ(t)
i2/2(1 − a1)β1

]2
.

Assuming exchangeability of expectation and differentiation, the expected Hessian is

B∗ =
[
β∗

1 −β∗
1

a∗
1 1 − a∗

1

]{
T∑

t=1

[
E(ẍ(t)2

i1/2), E(ẍ(t)
i1/2ẍ(t)

i2/2)

E(ẍ(t)
i1/2ẍ(t)

i2/2), E(ẍ(t)2
i2/2)

]}[
β∗

1 a∗
1

− β∗
1 1 − a∗

1

]

.

4We thank an anonymous referee for suggesting this exploration. The proof of the general case is available upon
request. The fact that α∗ is not point identified when β∗ = 0 is also called the Davies problem (Davies, 1977,
Davies, 1987). Khalaf et al. (2021) provide detailed discussion of the identification issue in the dynamic panel
MIDAS models.

© 2023 Oxford University and John Wiley & Sons Ltd.
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Estimation of panel data models 521

It is now straightforward to see that the semi-definite positive matrix B∗ is of full rank if
and only if

Hr ≡
T∑

t=1

[
E(ẍ(t)2

i1/2), E(ẍ(t)
i1/2ẍ(t)

i2/2)

E(ẍ(t)
i1/2ẍ(t)

i2/2), E(ẍ(t)2
i2/2)

]

,

is of full rank and β∗
1 �= 0. Hr is of full rank if and only if there is no perfect collinearity

between
∑T

t=1 ẍ(t)
i1/2 and

∑T
t=1 ẍ(t)

i2/2, which is exactly the same as the usual linear FE
estimation. Here the new constraint that β∗

1 �= 0 is specific to our FE-NLS estimation. It is
easy to see that β∗

1 = 0 causes the true model to depend on fewer parameters than specified,
which is an example of a poorly identified model. For the purpose of identification of θ∗,
we need to rule out β∗ = 0.

The above theorem is also useful to quantify the efficiency loss from esti-
mating the aggregation parameter vector α. When α∗ is unknown, the asymp-
totic variance of β̂FE−NLS is the right lower block matrix of B∗−1C∗B∗−1. When
α∗ is known, the asymptotic variance matrix of the standard FE estimator is
(E[Xi(α

∗)′QT Xi(α
∗)])−1(E[Xi(α

∗)′QT uiu′
iQT Xi(α

∗)])(E[Xi(α
∗)′QT Xi(α

∗)])−1. The dif-
ference between the two asymptotic matrices measures the efficiency loss from estimating
the unknown aggregation weights. See Newey and McFadden (1994, section 9) for a
formal proof of the efficiency comparison.

It is worth emphasizing that the strict exogeneity maintained in assumption 2 is crucial
for identification. In our context, one can easily verify that the score evaluated at the
true values does not necessarily have zero expectation under the low-frequency strict
exogeneity assumption. For example, if we differentiate the population objective function
with respect to ajk , the corresponding first-order condition E

[ ∑T
t=1 x(t)

k,ij/müit
]

does not
equal to zero if we only assume E[uit|xi1(α

∗), ..., xiT (α∗)] = 0. Thus the identification
may fail if we use the low-frequency strict exoegeneity assumption.

Remark 3. In many empirical applications, some covariates are nonlinear function
of others, such as quadratics and interactions. A natural question is how to assign
weights for these nonlinear covariates. The consistency of our FE-NLS estimator
requires correct specification of E(yit|xi, ci). However this requirement alone does
not provide any useful guidance about assigning weights for nonlinear terms. To
clarify this point, consider the scalar covariate case with m = 2 and we conjecture
that quadratic terms should be included in the conditional mean. The conditional
mean could be E(yit|xi, ci) = (

x(t)
i1/2a1 + x(t)

i2/2a2
)
β1 + (

x(t)
i1/2a1 + x(t)

i2/2a2
)2

β2 + ci, or

E(yit|xi, ci) = (
x(t)

i1/2a11 + x(t)
i2/2a21

)
β1 + [

(x(t)
i1/2)

2a12 + (x(t)
i2/2)

2a22
]
β2 + ci. At first glance,

the specification (x(t)
i1/2a1 + x(t)

i2/2a2)
2 seems to be more restrictive than (x(t)

i1/2)
2a12 +

(x(t)
i2/2)

2a22 as the the latter has additional free weighting parameters. However, if we

expand
(
x(t)

i1/2a1 + x(t)
i2/2a2

)2
, there is an interaction term x(t)

i1/2x(t)
i2/2 that is not included in

the latter specification. Without additional information we usually do not know which
specification is correct. For empirical applications, the choice is at the researcher’s
discretion. It is worth noting though that most applications may start from specifying a
model on low-frequency covariates, and in that case it makes more sense to introduce

© 2023 Oxford University and John Wiley & Sons Ltd.
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522 Bulletin

nonlinear terms through the former way. A practical suggestion is that, when the sample
size is moderate and m is relatively large, it is reasonable to use the nonlinear function of
the aggregated variables to conserve the degrees of freedom without sacrificing too much
flexibility.

When m and p are small, a natural alternative of our proposed FE-NLS estimator
is the fixed effects estimator obtained from high frequency panel models.5 For the
purpose of illustration we consider the scalar covariate case. Our FE-NLS estimator can
be obtained by solving min

∑N
i=1

∑T
t=1 (ÿit − ẍ(t)

i αβ)2 under the constraint
∑m

j=1 aj = 1.
The FE estimator based on high frequency panel models is obtained by minimizing∑N

i=1

∑T
t=1 (ÿit − ẍ(t)

i η)2. Under the condition that rankE[
∑T

t=1 ẍ(t)′
i ẍ(t)

i ] = m, the high-
frequency FE estimator η̂ = (η̂1, ..., η̂m)′ is uniquely determined with probability
approaching one. Given the constraint that

∑m
j=1 aj = 1, there is a one-to-one

mapping from η̂ to β̂FE−NLS. Specifically, it can be shown that β̂FE−NLS = ∑m
j=1 η̂j.

If β̂FE−NLS differs from
∑m

j=1 η̂j, then the FE-NLS estimators are not optimal
and the criterion function can be further reduced by resetting β̂FE−NLS = ∑m

j=1 η̂j

and α̂FE−NLS = ( η̂1∑m
j=1 η̂j

, ..., η̂m∑m
j=1 η̂j

)′
. The algebraic equivalence6 between the FE-NLS

estimator and the high-frequency FE estimator also highlights the importance of assuming
the high-frequency strict exogeneity. If the strict exogeneity assumption is conditioning on
the aggregated covariates, the high frequency FE estimator, hence the FE-NLS estimator,
would be inconsistent.

When m and p are moderate, the dimension of α could be very large, which may lead
to the problem of parameter proliferation. To avoid such circumstances, our proposed
FE-NLS estimation method could use flexible parametric functions with a low-dimension
parameter vector, e.g. ajk = fj,k(ξk), to model these aggregation weights. See Ghysels
et al. (2007) for a variety of popular choices of these parametric weighting functions. We
introduce the Almon lags polynomial weighting functions in the appendix. It should be
mentioned that, when parametric functions are used to model the unknown aggregation
weights, the FE estimator from the high-frequency panel model is no longer identical to
our FE-NLS estimator. When these parametric weighting functions are correctly specified,
it is likely that the FE-NLS estimator using the parametric weighting functions are more
efficient than the FE-NLS estimator with unrestricted weighting parameters as defined
in equation (5). This is because NLS estimator with correctly specified constraints is
asymptotically more efficient than unrestricted NLE estimator. See, for example, Newey
and McFadden (1994, section 9). However, when the parametric weighting functions are
misspecified, the FE-NLS estimator based on the parametric aggregation scheme would
be inconsistent.

Another case that the equivalence between the high-frequency FE estimator
and the FE-NLS estimator breaks down is when some covariates are nonlinear
functions of other aggregated variables. Consider again the scalar covariate example in
remark 2 and suppose that E(yit|xi, ci) = (

x(t)
i1/2a1 + x(t)

i2/2a2
)
β1 + (x(t)

i1/2a1 + x(t)
i2/2a2)

2β2 +

5We thank an anonymous referee for suggesting this comparison.
6We also present two important cases that such equivalence result no longer holds for these two estimators in the
following discussions.

© 2023 Oxford University and John Wiley & Sons Ltd.
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Estimation of panel data models 523

ci. The objective function of the FE-NLS estimation is to minimize
∑N

i=1

∑T
t=1[

yit − (
x(t)

i1/2a1 + x(t)
i2/2a2

)
β1 − (

x(t)
i1/2a1 + x(t)

i2/2a2
)2

β2 − ci
]2

, while the objective

function of the high-frequency FE estimator is
∑N

i=1

∑T
t=1

[
yit − x(t)

i1/2η11 −
x(t)

i2/2η21−
(
x(t)

i1/2

)2
η12 − (

x(t)
i2/2

)2
η22 − x(t)

i1/2x(t)
i2/2η32 − ci

]2
. In this case the high-frequency

FE estimator is generally different from our FE-NLS estimator, unless additional
constraints, such as η12/η22 = (η11/η21)

2, are imposed for the high-frequency FE
estimation.

III. The Chamberlain and Mundlak approaches to the panel MIDAS
models

The main advantage of the panel data models over the cross section models is that we
can explicitly account for the time-constant individual fixed effects, which are usually
correlated with the explanatory variables. As an alternative to the fixed effects estimator,
Mundlak (1978) develops a novel modelling device for the individual fixed effects. For
the balanced panel model, Mundlak (1978) projects the individual fixed effects onto the
time averages of the explanatory variables L(ci|xi1, ..., xiT ) = xiγ

∗. Make substitution of
the Mundlak device into the original linear panel model in equation (1)

yit = xitβ
∗ + xiγ

∗ + ai + uit, (7)

where ai = ci − xiγ
∗ is the projection error. It is well-known that the pooled OLS

estimator of β∗ is identical to the fixed effects estimator. Wooldridge (2019) obtains a
similar equivalence result for the unbalanced panel models when the selection indicator is
conditionally independent with uit.

This paper attempts to extend the Mundlak device to the panel MIDAS regression
model. Define xi(α

∗) = T−1 ∑T
t=1 xit(α

∗). If we make linear projection of ci onto the
entire history of xit(α

∗) and assume that L(ci|xi1(α
∗), ..., xiT (α∗)) = xi(α

∗)γ ∗L, then the
augmented regression is given by the following low-frequency Mundlak equation

yit = xit(α
∗)β∗ + xi(α

∗)γ ∗L + εL
it , (8)

where εL
it is composed of the projection error and uit. At first glance one might conjecture

that the NLS estimator of β∗ in equation (8) is still numerically equivalent to the FE-NLS
estimator. However, as to be shown later, this equivalence holds only if the true weights
α∗ are known. While the Frisch–Waugh theorem still applies to the estimation of the
slope parameters, the NLS estimator of β∗ in the augmented regression (8) is no longer
identical to the FE-NLS estimator because of the presence of the unknown parameters α∗.

Here the interesting case is that we project the individual fixed effects onto the high-
frequency series xi instead of the history of the aggregated explanatory variables xit(α). An
obvious reason is that the projection error of a long projection has a smaller variance, which
follows from the property of linear projection. If we use xi = (Tm)−1 ∑T

t=1

∑m
j=1 x(t)

ij/m as
proxy variables for ci, then the high-frequency Mundlak equation can be written as

yit = xit(α
∗)β∗ + xiγ

∗H + εH
it . (9)

© 2023 Oxford University and John Wiley & Sons Ltd.
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With some straightforward algebra, one can show that the pooled OLS estimator of β∗ in
equation (9) is no longer identical to the FE-NLS estimator even when α∗ is known but is
not flat.

A more flexible alternative to the Mundlak device is proposed by Chamberlain (1982).
Instead of assuming the linear projection of the individual fixed effects depends only on the
time averages of the explanatory variables, Chamberlain (1982) considers an unrestricted
linear projection of the individual fixed effects. For the single-frequency panel model, the
linear projection is written as follows

L(ci|xi1, ..., xiT ) = ψ∗ + xi1λ
∗
1 + · · · + xiTλ∗

T . (10)

Making use of equation (10), we obtain the following estimating equation for single-
frequency panel models

yit = xitβ
∗ + ψ∗ + xi1λ

∗
1 + · · · + xiTλ∗

T + εit. (11)

Since the composed error εit is uncorrelated with all the regressors, the pooled OLS
estimator of β∗ in equation (11) is consistent and can be shown to be identical to the fixed
effects estimator.

Extensions of the Chamberlain’s approach for unbalanced panel data models have
been investigated by Abrevaya (2013). Define the selection indicator sit = 1 if (yit, xit)

is observed and sit = 0 otherwise. As demonstrated by Abrevaya (2013), a simple linear
projection of the individual fixed effects onto (si1xi1, ..., siT xiT ) results in inconsistent
estimation. Abrevaya (2013) further provides a modified Chamberlain projection approach
within the GMM estimation framework. Here we provide a comprehensive study of the
Chamberlain’s approach for the panel MIDAS regression model. Specifically we consider
the following two possible specifications.

L(ci|xi1(α
∗), ..., xiT (α∗)) = ψ∗L + xi1(α

∗)λ∗L
1 + · · · + xiT (α∗)λ∗L

T , (12)

L(ci|xi) = ψ∗H + xiλ
∗H , (13)

where equation (12) gives the projection of the individual fixed effects onto the aggregated
explanatory variables and equation (13) represents the linear projection onto the high
frequency series. We use the superscripts L and H to distinguish the parameters associated
with the linear projections onto the low-frequency and the high-frequency series,
respectively. Substituting equations (12) and (13) into the original regression model
yields the low-frequency Chamberlain equation and the high-frequency Chamberlain
equation

yit = xit(α
∗)β∗ + ψ∗L + xi1(α

∗)λ∗L
1 + · · · + xiT (α∗)λ∗L

T + eL
it . (14)

yit = xit(α
∗)β∗ + ψ∗H + xiλ

∗H + eH
it . (15)

Since the regression errors are uncorrelated with the covariates in these two equations
and assumption (3) holds, it follows that the pooled OLS estimators of β∗ in equation

© 2023 Oxford University and John Wiley & Sons Ltd.

 14680084, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/obes.12536 by R

E
N

M
IN

 U
N

IV
E

R
SIT

Y
 O

F C
H

IN
A

 N
O

N
-E

A
L

 A
C

C
O

U
N

T
, W

iley O
nline L

ibrary on [08/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Estimation of panel data models 525

(14) and (15) are all consistent for β∗ for the same reason as in theorem 1. However, only
the pooled OLS estimator of β∗ in equation (15) is numerically identical to the FE-NLS
estimator when α∗ is unknown.

Here we make a few instructive comparisons. For single-frequency panel data models,
the pooled OLS estimator of the original panel model augmented with the time averages
or the entire history of the explanatory variables are both numerically identical to the
fixed effects estimator. For the panel MIDAS regression model, the high-frequency
Mundlak estimator of β∗ is not identical to the fixed effects estimator unless the true
aggregation weights of the high frequency variables are flat. The use of low-frequency
Mundlak device no longer delivers the fixed effects estimator unless the true aggregation
weights are known. The Chamberlain’s projection technique still delivers the fixed effects
estimator when the individual fixed effects is projected onto the high frequency series.
Define xi(α) = (xi1(α), ..., xiT (α)). We summarize these algebraic equivalence results in
the following proposition.

Proposition 1. (Equivalence results for panels MIDAS regression models) When the
true aggregation weights α∗ are known, the following estimators of β∗ are numerically
identical. (a1) the FE-NLS estimator (NLS of ÿit on ẍit(α)); (b1) the low-frequency
Mundlak regression estimator (NLS of yit on 1 and xit(α) and xi(α)); (c1) the low-
frequency Chamberlain regression estimator (NLS of yit on xit(α), 1 and xi(α)); (d1)
the high-frequency Chamberlain regression estimator (NLS of yit on 1, xit(α) and xi).
When the true aggregation weights α∗ are unknown, only the high-frequency Chamberlain
regression estimator (d1) is numerically equivalent to the FE-NLS estimator (a1).

All proofs are delegated to the appendix. Remarkably, the above proposition remains
to be true when we use smooth parametric weighting functions {fjk(ξk)}m,p

j=1,k=1, such as the
Almon polynomial functions, to model the aggregation weights {ajk}m,p

j=1,k=1.7 Define

ξ = (ξ ′
1, ..., ξ ′

p)
′, xk,it(ξk) = ∑m

j=1 fjk(ξk)x
(t)
k,ij/m, xi(ξ) = T−1 ∑T

t=1 xit(ξ) and xi(ξ) =
(xi1(ξ), ..., xiT (ξ)). The following proposition summarizes the equivalence results when
parametric weighting functions are used in the panel MIDAS models.

Proposition 2. (Equivalence results for panels MIDAS regression models with
parametric aggregation functions) Let {fjk(ξk)}m,p

j=1,k=1 be a set of differentiable functions
such that

∑m
j=1 fjk(ξk) = 1 for k = 1, ..., p. When ξ is known, the following estimators of

β are numerically identical. (a2) the FE-NLS estimator (NLS of ÿit on ẍit(ξ)); (b2) the
low-frequency Mundlak regression estimator (NLS of yit on 1 and xit(ξ) and xi(ξ)); (c2)
the low-frequency Chamberlain regression estimator (NLS of yit on xit(ξ), 1 and xi(ξ));
(d2) the high-frequency Chamberlain regression estimator (NLS of yit on 1, xit(ξ) and xi).
When ξ is unknown and is estimated along with β, only the high-frequency Chamberlain
regression estimator (d2) is numerically equivalent to the FE-NLS estimator (a2).

It should be emphasized that the focus of this section is on algebraic equivalences. We
examine the equivalence relationship among various estimators when the (parametric)
aggregation parameters are known/unknown. When these estimators differ from each

7This finding is motivated by the comment of an anonymous referee. We thank the referee for this insightful
suggestion.

© 2023 Oxford University and John Wiley & Sons Ltd.
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other, it is interesting to compare the relative efficiency of these estimators. In principle,
the projection error has a smaller variance when the unobserved fixed effect is projected
onto a longer list of variables, which would lead to more efficient estimator of β∗. On the
other hand, adding more unknown parameters to the regression models usually reduces
the precision of the estimates of β∗. We compare the efficiency of these estimators via a
small simulation study in the next section.

IV. Simulation results

In this section we investigate the finite sample properties of the proposed estimators through
various simulation designs. Specifically we evaluate the small sample performances of
the following six estimators (i) the naive fixed effects (FE-Naive) estimator, which is the
fixed effects estimator with an equal weighting scheme; (ii) the fixed effects nonlinear
least squares (FE-NLS) estimator as expressed in equation (5); (iii) the low-frequency
Mundlak (LF-Mundlak) estimator as defined in equation (8); (iv) the high-frequency
Mundlak (HF-Mundlak) estimator as defined in equation (9); (v) the low-frequency
Chamberlain (LF-Chamberlain) estimator obtained from equation (14); (vi) the high-
frequency Chamberlain (HF-Chamberlain) estimator as described in equation (15). To
economize the space, the simulation results of the FE-NLS estimator are reported
together with the high-frequency Chamberlain estimator because they are numerically
identical as shown in proposition 1. Throughout this section, the panel sample size is
set as (N , T) = (500, 3) and the replication number for each design is 1,000. The mixed
frequency panel data model is specified as the following

yit = β∗xit(α
∗) + ci + uit. (16)

xit(α
∗) = x(t)

i1/4a∗
1 + x(t)

i2/4a∗
2 + x(t)

i3/4a∗
3 + x(t)

i4/4a∗
4. (17)

We consider the estimation of the scalar β∗ = 1 when the explanatory variable
is sampled at four times more often (i.e. m = 4) than the dependent variable.
In what follows we consider simulation designs with four different weighting
schemes: α∗ = (0.25, 0.25, 0.25, 0.25), α∗ = (0.1, 0.2, 0.4, 0.3), α∗ = (0.2, 0.3, 0.2, 0.3)

and α∗ = (0.1, 0.4, 0.1, 0.4).
We examine the small sample performances of these estimators based on four

different data generating processes. DGP1: x(t)
ij/4 are i.i.d. Normal(0,1) across j and

t. ci = xiλ + εi, where λ is a 12 × 1 vector of ones and εi is a standard normal
random variable that is independent of all other variables. The idiosyncratic term uit

is i.i.d. Normal(0,9) and is independent of everything. DGP2: (xi, ci) are drawn from
a joint multivariate normal distribution with zero means and covariance matrix R.
All diagonal elements of R are set to be one. The correlation coefficient among the
high-frequency variables is 0.6 and the correlation between the high-frequency variable
and the fixed effects is 0.4. uit is independent of everything and is i.i.d. Normal(0,9).
DGP3: Define x(t)

i = [x(t)
i1/4, x(t)

i2/4, x(t)
i3/4, x(t)

i4/4]′ and e(t)
i = [

e(t)
i1/4, e(t)

i2/4, e(t)
i3/4, e(t)

i4/4

]′
. x(t)

i =
Hx(t−1)

i + 0.5ciι + e(t)
i , where ι is a 4 × 1 vector of ones, e(t)

ij/4 and ci are standard

normal and independent of each other. The initial values x(1)
ij/4 are drawn from Normal(1

© 2023 Oxford University and John Wiley & Sons Ltd.

 14680084, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/obes.12536 by R

E
N

M
IN

 U
N

IV
E

R
SIT

Y
 O

F C
H

IN
A

 N
O

N
-E

A
L

 A
C

C
O

U
N

T
, W

iley O
nline L

ibrary on [08/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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+ 0.5ci,1). The idiosyncratic errors uit follow Normal(0,9). The 4 × 4 coefficient
matrix H = [ρ1, ρ2, ρ3, ρ4], with ρ1 = [0.6, 0.2, 0.3, 0.4]′, ρ2 = [0.9, 0.2, 0.3, 0.3]′, ρ3 =
[0.6, 0.1, 0.1, 0.4]′ and ρ4 = [0.5, 0.3, 0.3, 0.4]′. DGP4 is exactly the same as DGP3
except that we use a different H matrix by resetting ρ1 = [0.6, 0.6, 0.6, 0.6]′,
ρ2 = [0.9, 0.9, 0.9, 0.9]′, ρ3 = [0.1, 0.1, 0.1, 0.1]′ and ρ4 = [0.5, 0, 0, 0]′.

From the previous discussion in section II, our FE-NLS estimation continues to
produce reliable estimates under random weighting coefficients as long as the randomness
of these coefficients are independent of all covariates. Here we consider several simulation
designs with random weighting coefficients. Specifically, the data generating process of
(xi, ci, ui) is the same as in DGP3 and DGP4 except that there are randomness in
the weighting coefficients. For example, now α∗ = (0.1, 0.2, 0.4, 0.3) stands for the
mean value of all the random coefficients. For a given individual i, the associated
weighting parameters are given as ai,1 = 0.1 + vi,1, ai,2 = 0.2 + vi,2, ai,3 = 0.4 + vi,3 and
ai,4 = 1 − ai1 − ai,2 − ai,3, where (vi,1, vi,2, vi,3) are independent of all covariates and
individual fixed effects. Each is independently drawn from Uniform(−0.1, 0.1). We will
call the combination of DGP3 with random weighting coefficients as DGP5, and the
combination of DGP4 with random weighting as DGP6.

For all the above data generating processes, the explanatory variables are correlated
with the fixed effects. DGP1 restricts that the high-frequency variables are independent
across time. Based on the previous analysis in section II, we would expect that the
FE-Naive estimator is also consistent. DGP2 allows for exchangeable correlations among
the high frequency variables x(t)

ij/m, i.e. Cov(x(t)
ij/m, x(s)

il/m) = 0.6 if t �= s or j �= l. DGP3
and DGP4 generate the high frequency variables from a VAR(1) process with additive
individual fixed effects.

We compare the biases, SD and the actual coverage rates (CR) of 95% confidence
intervals of these estimators via various simulation plots. The simulation results for
deterministic weighting designs are collected in Tables 1 and 2. Firstly, we note that when
α = (0.25, 0.25, 0.25, 0.25), the naive fixed effects estimator, as expected, has better finite
sample performance than the LF-Mundlak, HF-Mundlak and LF-Chamberlain estimators.
It is worth mentioning that, even under the equal weighting scheme, the HF-Chamberlain,
or equivalently, the FE-NLS estimator, provides satisfying small sample performances in
terms of bias and SD, although the actual coverage rates of HF-Chamberlain are not as
good as the FE-Naive estimator.

Secondly, when the true weighting scheme deviates from the equal aggregation
weights, the inconsistency of the FE-Naive estimator varies across different simulation
designs. The bias of the FE-Naive estimator is negligible in DGP1 since the high-
frequency variables are independent across time, which is in line with the discussion
of the remark in section II. Surprisingly, the FE-Naive estimator continues to perform
well in DGP2 although its coverage rate is now slightly larger than the nominal level.
Moving to DGP3 and DGP4, we can see that the FE-NLS estimator has larger biases
than the other competing estimators. The actual coverage rate of the naive fixed effects
estimator deteriorates in DGP4, while other proposed estimators continue to provide
reliable inferences.

We can compare the four proposed estimators across different simulation plots.
Our simulation results show that, in most cases, the HF-Chamberlain estimator and

© 2023 Oxford University and John Wiley & Sons Ltd.
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HF-Mundlak estimator have smaller biases compared to the LF-Chamberlain and LF-
Mundlak estimators, respectively. For DGP1 and DGP2, these high-frequency estimators
are also more efficient than the low-frequency estimators, which is consistent with the
theoretical prediction. However, we do not find a similar pattern of efficiency in DGP3
and DGP4. In terms of the coverage rates, all estimators perform equally well under DGP1
and DGP2 but the HF-Chamberlain estimator outperforms other estimators in DGP3 and
DGP4.

The simulation results for random weighting coefficients are collected in Table 3.
Consistent with our theoretical prediction in section II, our proposed estimators continue
to provide reliable estimation results under random weighting schemes. The bias and SD
of the FE-NLS estimator does not change much in these new settings and its coverage
rates are now marginally larger than the nominal level, which suggests that inference
based on our FE-NLS estimator is slightly conservative.

Our simulation study suggests that the FE-NLS estimator provides useful inferences
under various data generating processes. In other cases considered here, the naive
fixed effects estimator produces unreliable inferences due to large biases. Our proposed
estimators, on the other hand, have satisfying small sample performances across all
designs. Among all the four viable estimators, the FE-NLS estimator (the HF-Chamberlain
estimator) has relatively small bias and SD. Moreover, the actual coverage rates of the
FE-NLS estimator are all very close to their theoretical level of 0.95 across all designs.

V. Empirical applications

In recent years, climate change has been one of the most discussed issues in various fields.
In economics, enormous effort has been put to address the question ‘how does the climate
impact society and economics’. Most studies focus on how weather conditions have shifted
in a given area and their consequential impacts on economic growth, agricultural output,
industrial output, productivity, and other outcomes. Among them, Dell et al. (2012) find
that that a 1◦C increase in average annual temperature reduces economic growth by 1.3
percentage points for poor countries. Their study calculates the annual average of the
temperature as a measure of the overall weather condition of the year. This flat aggregating
scheme ignores the fact that temperature in different seasons may have different impacts
on economic activities.

For our purpose, we collect the Terrestrial Air Temperature and Precipitation:
1900–2017 Gridded Monthly Time Series (1900–2017) (V 5.01). Basically, the datasets
provide monthly mean temperature and precipitation data at 0.5 × 0.5 degree resolution,
from which we can aggregate to country-level using the Global Rural-urban Mapping
Project. The datasets are the updated version of the data used in Dell et al. (2012) and thus
minor variation may exist for the datasets. We follow exactly the same procedure as in
Dell et al. (2012) to construct the climate panel dataset except that we keep these weather
variables at quarterly frequency. By assigning different weights to weather variables of
different quarters, it allows us to obtain a more accurate measurement of the yearly
weather condition.

The empirical framework considered here is the same as the one adopted by Bond,
Leblebicioğlu, and Schiantarelli (2010) and Dell et al. (2012). A simple economy is

© 2023 Oxford University and John Wiley & Sons Ltd.
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modelled as follows

Yit = eβTit AitLit, (18)

�Ait/Ait = gi + δTit, (19)

where Yit is the aggregate output for country i at year t, Ait denotes the labor productivity,
Lit measures the working population and Tit is the weather variable. gi is the country
specific productivity growth rate. As described in Dell et al. (2012), equation (18)
measures the level effect of weather on production and equation (19) captures the growth
effect of weather. Taking logs of equation (18) and making difference with respect to
time, we have the following distributed lag equation

yit = (β + δ)Tit − βTit−1 + gi, (20)

where yit is the growth rate of per-capita output. From the above equation we can see
that the level effects β is identified as the negative of the coefficient on the lag weather
variable and the growth effect δ can be estimated as the summation of all parameters on
the weather variables.

The weather variables (temperature and precipitation) are available at a higher
frequency than the GDP growth rate. We adopt the new estimation method to accommodate
the possibility that weather variables of different periods are of different importance.
Let T (t)

ij be the weather variable of quarter j in year t for country i and assume

Tit = a1T (t)
i1 + a2T (t)

i2 + a3T (t)
i3 + a4T (t)

i4 . In this section we compare the FE-Naive and the
FE-NLS estimates of various specifications. Here we focus only on the FE-NLS estimator
(or its equivalent variant HF-Chamberlain estimator) because it has better finite sample
performances as demonstrated in previous simulation studies.

First we revisit the benchmark model that there are no lag effects of the temperature (i.e.
imposing β = 0), which corresponds to the table 2 in Dell et al. (2012). Following Dell
et al. (2012), the dummy variable ‘poor’ is defined as having below-median PPP-adjusted
per capita GDP in the first year the country enters the dataset. The dummy variable ‘hot’
is defined as having above median temperature in the 1950s. The FE-Naive estimates
and FE-NLS estimates are reported in Table 4. The P values associated with the Wald
statistic testing that all temperature weights are equal are reported in the third row from the
bottom. These large p values indicate that the true aggregation weights are not statistically
different from the flat weights used in the FE-Naive estimation.

The last two rows of Table 4 give the sum of the main effects of weather variables
(temperature and precipitation) and their interactions with the poor dummy. From
specifications (2)–(4), we can see that the increase of the temperature has a negative
effect for the poor countries while the effects of the precipitation are not statistically
significant. Based on the results from Table 4, we can see that the net effect of a 1◦C
rise in temperature is to decrease the growth rates by 1.53–1.94 percentage points for
poor countries. Except for specification (4), the absolute values of the FE-Naive estimates
are marginally larger than the FE-NLS estimates, which indicates that the flat weighting

© 2023 Oxford University and John Wiley & Sons Ltd.
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scheme may overestimate the negative effects of high temperature on the economic growth
rates in poor countries.

Next we consider more flexible models by including lags of temperature to capture the
dynamics of these effects. The model with 1 lag is given by equation (20). The FE-Naive
estimates and the FE-NLS estimates of the distributed lag models are reported in Tables 5
and 6, respectively. The last two rows of each column in these tables present the growth
effects of temperature for poor and rich countries, calculated by summing the coefficients
associated with the respective temperature variable and its lags. These results suggest that
the negative effect of temperature persists only in the short run. As more lags are included,
the growth effect becomes statistically insignificant. As we can see from Table 6, estimates
of the first individual lags are statistically significant, which suggests the the temperature
shocks mainly work through the level effects instead of the growth effects. In the first
year, 1◦C increase in temperature leads to a reduction of 1.69–1.74 percentage points of
growth rate for poor countries. In the second year, the effect of the initial temperature
shock on the growth declines to 0.85–0.87 percentage points. This is in contrast with the
results from Dell et al. (2012), in which the main driving force is the growth effect. Based
on the empirical evidences from Table 6, we conclude that the temperature shocks have
a negative effect on the growth of poor countries in the short run but not in the long run.
The level effect eventually reverses itself once the shock disappears.

A noticeable difference between Tables 5 and 6 is that the FE-NLS estimators of the
first lag of temperature within rich countries are significant at 1% level in specifications
(2), (3), (7) and (8), while these lags are not significant in the FE-Naive estimation. This
finding suggests that the temperature shock might have a positive level effect for the
rich countries. This difference between the FE-NLS and the FE-Naive estimators can be
attributed to the unequal aggregation weights. Based on the P values reported in the third
row from the bottom at Table 6, we reject the null hypothesis of equal aggregation weights
in specifications (2), (3) and (7). The FE-Naive and the FE-NLS estimates are not very
different for poor countries, although the magnitudes of the FE-NLS estimates are slightly
smaller than the FE-Naive estimates in various specifications.

VI. Conclusion

This paper investigates the properties of some common estimators developed for balanced
panel models in the context of panel MIDAS models. In particular, we consider the
estimation of panel data models in which the explanatory variables are sampled at a higher
frequency than the dependent variable. We first show that the usual fixed effects estimator
with an equal weighting scheme is generally inconsistent except for some special cases.
Motivated by the time series MIDAS model, we propose a data-driven method to estimate
the true aggregation weights. The linear regression parameters together with the unknown
weights can be estimated by the fixed effects nonlinear least squares method.

We further extend the Mundlak device and the Chamberlain’s projection approach
to the panel MIDAS model. In single-frequency panel data models, it is well known
that the use of Mundlak device or the Chamberlain’s projection approach all lead to the
fixed effects estimator. In the panel MIDAS model, we can either project the individual
fixed effects onto the aggregated explanatory variables or the high-frequency explanatory

© 2023 Oxford University and John Wiley & Sons Ltd.
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Estimation of panel data models 537

variables, which gives rise to two different versions of the Mundlak device and the
Chamberlain’s projection. We therefore propose four different estimators: low-frequency
Mundlak estimator, high-frequency estimator, low-frequency Chamberlain estimator and
the high-frequency Chamberlain estimator. We show that, when the aggregation weights
are known, the low-frequency Mundlak estimator, the low-frequency and high-frequency
Chamberlain estimators are numerically identical to the fixed effects nonlinear least squares
estimator. When the true weights are unknown, only the high-frequency Chamberlain
estimator is equivalent to the fixed effects nonlinear least squares estimator. We further
demonstrate that the same equivalence results extend to the case that parametric weighting
functions are used in the panel MIDAS model. The proposed estimators perform well in
various simulation designs.

We revisit the paper by Dell et al. (2012) to examine the effects of temperature
on the economic growth rates with our new method. Our results indicate that the high
temperature reduces the economic growth rates of the poor countries in the short run. The
empirical evidences further suggest that the mechanism of how the temperature shocks
affect the growth is through the level effects instead of the growth effects.

Appendix A

Calculation of the scores and the Hessian matrix. The ith observation contributes to
the objective function as q(Wi; θ) = 1

2

∑T
t=1 [ÿit − ẍit(α)β]2. The score can be derived as

si(θ) = ∇θqi(θ) = −
T∑

t=1

∇θ[ẍit(α)β]′ [ÿit − ẍit(α)β] . (A1)

Note that, for t = 1, ..., T , we can rewrite ẍit(α)β = ∑p
k=1 ẍk,it(αk)βk = ∑p

k=1∑m
j=1 ẍ(t)

k,ij/majkβk . Recall that we internalize the constraint that
∑m

j=1 ajk = 1 by setting

amk = 1 − ∑m−1
j=1 ajk for k = 1, ..., p. The total number of unrestricted weighting parameter

is (m − 1)p, so dim(θ) = dim(α) + dim(β) = (m − 1)p + p = mp. Then, for t = 1, ..., T ,

∂ [ẍit(α)β]

∂ajk
=

∂
[∑p

k=1

∑m
j=1 ẍ(t)

k,ij/majkβk

]

∂ajk

=
∂
[∑p

k=1

(∑m−1
j=1 ẍ(t)

k,ij/majkβk + ẍ(t)
k,im/mamkβk

)]

∂ajk

=
(

ẍ(t)
k,ij/m − ẍ(t)

k,im/m

)
βk , j = 1, ..., m − 1, k = 1, ..., p. (A2)

∂ [ẍit(α)β]

∂βk
=

∂
[∑p

k=1

∑m
j=1 ẍ(t)

k,ij/majkβk

]

∂βk
=

m∑

j=1

ẍ(t)
k,ij/mαjk = ẍk,it(αk), k = 1, ..., p.

(A3)

© 2023 Oxford University and John Wiley & Sons Ltd.
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It follows that the transpose of the score can be explicitly written as

si(θ)′ = −
T∑

t=1

∇θ [ẍit(α)β] üit

= −
T∑

t=1

[
∂[ẍit(α)β]

∂a11
, ..., ∂[ẍit(α)β]

∂am−1,p
, ∂[ẍit(α)β]

∂β1
, ..., ∂[ẍit(α)β]

∂βp

]
üit

= −
T∑

t=1

[(
ẍ(t)

1,i1/m − ẍ(t)
1,im/m

)
β1, ...,

(
ẍ(t)

p,i(m−1)/m − ẍ(t)
p,im/m

)
βp,

× ẍ1,it(α1), ..., ẍp,it(αp)
]

üit. (A4)

Next we calculate the Hessian matrix associated with the objective function as

Hi(θ) = ∇θ si(θ) = −
T∑

t=1

∇2
θ [ẍit(α)β] [ÿit − ẍit(α)β] +

T∑

t=1

∇θ[ẍit(α)β]′∇θ [ẍit(α)β] .

(A5)
The first term in the above equation has expectation 0 when evaluated at the true parameter
value. Hence, the expectation of the Hessian matrix can be expressed as

B∗ ≡ E
[
Hi(θ

∗)
] =

T∑

t=1

B∗
t =

T∑

t=1

E
{
∇θ

[
ẍit(α

∗)β∗]′∇θ

[
ẍit(α

∗)β∗]
}

. (A6)

Based on the score in equation (A4), we can see that a typical element of B∗
t is

E
[
. . . x(t)

k,ij/m . . . x(t)
l,ij/m

]
βkβl or E

[
. . . x(t)

k,ij/mẍl,it(αl)
]
βk or E

[
ẍk,it(αk)ẍl,it(αl)

]
, where

. . . x(t)
k,ij/m ≡ ẍ(t)

k,ij/m − ẍ(t)
k,im/m.

Appendix B: Parametric weighting functions

As pointed out by Ghysels et al. (2007), even with a moderate number of m and p,
the number of unrestricted parameters α can be very large. A distinguishing feature
of MIDAS model is to use a suitable parametrization with a low-dimension parameter
vector ξ to avoid the problem of parameter proliferation. While there are a variety of
parametrization designs, one popular choice is the exponential Almon lag polynomial.
Take the kth covariate as an example, the weight assigned to the jth high frequency term
is given by

ajk = exp(ξk1j + ξk2j2 + · · · + ξkLjL)
∑m

s=1 exp(ξk1s + ξk2s2 + · · · + ξkLsL)
, j = 1, ..., m. (B1)

Ghysels et al. (2006) use the above function with two parameters (L = 2) to show that the
Almon lag polynomial can take various forms, including equal weights, slow decaying
weights, rapidly declining weights, hump shape weights and so on. A different weighting
scheme is referred to as the beta lag function, which is parametrized with two parameters.

© 2023 Oxford University and John Wiley & Sons Ltd.
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Estimation of panel data models 539

See Ghysels et al. (2007) for more details. With proper parametrization of the weights,
the number of parameters to be estimated can be drastically reduced. Since the weights α

are now determined by a low-dimension vector ξ = (ξ ′
1, ..., ξ ′

p)
′, the FE-NLS estimator is

now obtained by the following procedure

(ξ̂FE−NLS, β̂FE−NLS) = argmin
ξ ,β

N∑

i=1

(yi − Xi(ξ)β)′QT (yi − Xi(ξ)β). (B2)

Compared with equation (5), the above objective function has a smaller number of
parameters to be estimated, especially when m is relatively large. Provided with
suitable regularity conditions, the FE-NLS estimator can be shown to be consistent
and asymptotically normally distributed. Obviously the scores and the Hessian matrix
associated with equation (B2) are different as we are now using flexible parametric
functions to model the aggregation weights.

Appendix C: Proof of Proposition 1

For the simplicity of notation we demean all variables by their sample averages so that the
intercept can be excluded from all regressions. We first investigate the simple case that
the aggregating weights are known.

(a) the FE-NLS estimator: β̂FE−NLS =
(∑N

i=1

∑T
t=1 ẍit(α

∗)′ẍit(α
∗)

)−1

(∑N
i=1

∑T
t=1 ẍit(α

∗)′ÿit

)
.

(b) the low-frequency Mundlak regression estimator: using the partition out theorem,
we can first regress xit(α

∗) on xi(α
∗) to obtain the residuals ẍit(α

∗) and then
regress yit on ẍit(α

∗) to obtain the low-frequency Mundlak estimator β̂LF−Mundlak =(∑N
i=1

∑T
t=1 ẍit(α

∗)′ẍit(α
∗)

)−1 (∑N
i=1

∑T
t=1 ẍit(α

∗)′yit

)
= β̂FE−NLS.

(c) the low-frequency Chamberlain regression estimator: applying the Frisch–Waugh
theorem, the residuals obtained from regressing xit(α

∗) on xi(α
∗) is also ẍit(α

∗) so the
low-frequency Chamberlain estimator is also identical to the FE-NLS estimator.
(d) the high-frequency Chamberlain regression estimator: Since xit(α

∗) = x(t)
i A(α∗) and

x(t)
i = xiSt, where St is a selection matrix that selects x(t)

i from xi, it follows that
xit(α

∗) = xiStA(α∗) is also a linear combination of xi. If we regress xit(α
∗) on xi, the

residuals are given by

rit(α
∗) = xit(α

∗) − xi

[
N∑

i=1

T∑

t=1

x′
ixi

]−1 [
N∑

i=1

T∑

t=1

x′
ixit(α

∗)

]

= xit − xi

[

T
N∑

i=1

x′
ixi

]−1 [
N∑

i=1

T∑

t=1

x′
ixiStA(α∗)

]

= xit − T−1
T∑

t=1

xiStA(α∗) = xit(α
∗) − xi(α

∗) = ẍit(α
∗).

It follows that the HF-Chamberlain estimator is also identical to the FE-NLS estimator.

© 2023 Oxford University and John Wiley & Sons Ltd.
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A more realistic case is that the true aggregating weights are unknown and they are
estimated along with the slope parameters.
(a1) The objective function for the FE-NLS estimator is

min
α,β

N∑

i=1

T∑

t=1

(ÿit − ẍit(α)β)2. (C1)

Define ẍ(t)
k,ij/m = x(t)

k,ij/m − T−1 ∑T
s=1 x(s)

k,ij/m. The associated first-order conditions, with
respect to β and αjk , are given by the following

N∑

i=1

T∑

t=1

ẍit(α̂)′(ÿit − ẍit(α̂)β̂) = 0. (C2)

N∑

i=1

T∑

t=1

ẍ(t)
k,ij/mβ̂k(ÿit − ẍit(α̂)β̂) = 0. (C3)

(d1) The objective function for the high-frequency Chamberlain regression estimator is

min
α,β,λH

N∑

i=1

T∑

t=1

(yit − xit(α)β − xiλ
H)2. (C4)

In this case the first-order conditions, with respect to β, λH and αjk , are given by the
following

N∑

i=1

T∑

t=1

xit(α̂)′
(
yit − xit(α̂)β̂ − xiλ̂

H) = 0. (C5)

N∑

i=1

x′
i

(
yi − xi(α̂)β̂ − xiλ̂

H) = 0. (C6)

N∑

i=1

T∑

t=1

x(t)
k,ij/mβ̂k

(
yit − xit(α̂)β̂ − xiλ̂

H) = 0. (C7)

Since xi(α) = xiA, it is straightforward to show that λ̂
H = β̌ − Aβ̂, where β̌ =[∑N

i=1 x′
ixi

]−1 [∑N
i=1 x′

iyi

]
. Making use of equation (C5), it then follows that the

β̂ =
[∑N

i=1

∑T
t=1 ẍit(α̂)′ẍit(α̂)

]−1 [∑N
i=1

∑T
t=1 ẍit(α̂)′ÿit

]
. Equation (C7) can be rewritten

as

N∑

i=1

T∑

t=1

x(t)
k,ij/mβ̂k(yit − xiβ̌ − ẍit(α̂)β̂) = 0

© 2023 Oxford University and John Wiley & Sons Ltd.

 14680084, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/obes.12536 by R

E
N

M
IN

 U
N

IV
E

R
SIT

Y
 O

F C
H

IN
A

 N
O

N
-E

A
L

 A
C

C
O

U
N

T
, W

iley O
nline L

ibrary on [08/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Estimation of panel data models 541

N∑

i=1

T∑

t=1

x(t)
k,ij/mβ̂k(yi − xiβ̌ + ÿit − ẍit(α̂)β̂) = 0

N∑

i=1

T∑

t=1

ẍ(t)
k,ij/mβ̂k(ÿit − ẍit(α̂)β̂) = 0, (C8)

where (C8) follows from the first-order condition (C6) that
∑N

i=1

∑T
t=1 x(t)

k,ij/mβ̂k(yi −
xiβ̌) = 0 (recall that xi is a vector of all high-frequency variables x(t)

ij/m). Thus we have
shown that the first-order conditions associated with the high-frequency Chamberlain
estimator is exactly the same as the F.O.C of the FE-NLS estimator.

The low-frequency and high-frequency Mundlak estimators, as well as the low-
frequency Chamberlain estimator can all be viewed as some restricted estimators from
the high-frequency Chamberlain regression. For a concrete example, consider a panel
MIDAS model with a single covariate for T = 2 and m = 3. Then the high-frequency
Chamberlain regression equation can be written as

yit = α1x(t)
i1 β + α2x(t)

i2 β + α3x(t)
i3 β + x(1)

i1 λH
1 + x(1)

i2 λH
2 + x(1)

i3 λH
3

+ x(2)
i1 λH

4 + x(2)
i2 λH

5 + x(2)
i3 λH

6 + ait, t = 1, 2. (C9)

we can simply run a regression of yit on (x(t)
i , xi) to consistently estimate all the parameters

with the restriction that the sum of a is one. Define xij = T−1∑
t=1x(t)

ij . The low-frequency
Mundlak estimator can be viewed as a restricted estimator from (C9).

yit = a1x(t)
i1 β + a2x(t)

i2 β + a3x(t)
i3 β + a1xi1γ

L + a2xi2γ
L + a3xi3γ

L + eit, t = 1, 2.

(C10)
An important restrictions imposed on (C10) compared to the unrestricted equation (C9)
is that the ratios of coefficients on (x(t)

i1 , x(t)
i2 , x(t)

i3 ), (x(1)
i1 , x(1)

i2 , x(1)
i3 ) and (x(2)

i1 , x(2)
i2 , x(2)

i3 )

from equation (C9) are all equal to a1 : a2 : a3. When the unrestricted parameter set
(λH

1 , λH
2 , λH

3 ), or similarly (λH
4 , λH

5 , λH
6 ), does not satisfy this ratio restriction, the low-

frequency Mundlak estimator is not the same as the high-frequency estimator, thus is
different from the FE-NLS estimator. Following the same line, we can conclude that the
high-frequency Mundlak estimator and the low-frequency Chamberlain estimator are also
different from the FE-NLS estimator. Q.E.D

Proof of Proposition 3.2. When ξ is known to us, the first part of the proposition is
exactly the same as the part that α is known in Proposition 1. The proof is thus omitted.
We focus on the proof of the second part only. When the parameter vector ξ associated
with the parametric aggregating functions are unknown and they are estimated along with
the slope parameters. �
(a2) The objective function for the FE-NLS estimator is

min
ξ ,β

N∑

i=1

T∑

t=1

(ÿit − ẍit(ξ)β)2. (C11)

© 2023 Oxford University and John Wiley & Sons Ltd.
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The associated first-order conditions, with respect to β and ξk , are given by the following

N∑

i=1

T∑

t=1

ẍit(ξ̂ )′(ÿit − ẍit(ξ̂ )β̂) = 0. (C12)

N∑

i=1

T∑

t=1

⎡

⎣
m∑

j=1

∂fjk
∂ξk

ẍ(t)
k,ij/mβ̂k

⎤

⎦ (ÿit − ẍit(α̂)β̂) = 0. (C13)

(d2) The objective function for the high-frequency Chamberlain regression estimator is

min
ξ ,β,λH

N∑

i=1

T∑

t=1

(yit − xit(ξ)β − xiλ
H)2. (C14)

In this case the first-order conditions, with respect to β, λH and ξk , are given by the
following

N∑

i=1

T∑

t=1

xit(α̂)′
(
yit − xit(α̂)β̂ − xiλ̂

H) = 0. (C15)

N∑

i=1

x′
i

(
yi − xi(α̂)β̂ − xiλ̂

H) = 0. (C16)

N∑

i=1

T∑

t=1

⎡

⎣
m∑

j=1

∂fjk
∂ξk

x(t)
k,ij/mβ̂k

⎤

⎦(
yit − xit(α̂)β̂ − xiλ̂

H) = 0. (C17)

Since xi(ξ) = xiÃ, it is straightforward to show that λ̂
H = β̌ − Ãβ̂, where β̌ =[∑N

i=1 x′
ixi

]−1 [∑N
i=1 x′

iyi

]
. Making use of equation (C15), it can be shown that

β̂ =
[∑N

i=1

∑T
t=1 ẍit(ξ̂ )′ẍit(ξ̂ )

]−1 [∑N
i=1

∑T
t=1 ẍit(ξ̂ )′ÿit

]
. Equation (C17) can be rewritten

as

N∑

i=1

T∑

t=1

⎡

⎣
m∑

j=1

∂fjk
∂ξk

x(t)
k,ij/mβ̂k

⎤

⎦ (yit − xiβ̌ − ẍit(ξ̂ )β̂) = 0

N∑

i=1

T∑

t=1

⎡

⎣
m∑

j=1

∂fjk
∂ξk

x(t)
k,ij/mβ̂k

⎤

⎦ (yi − xiβ̌ + ÿit − ẍit(ξ̂ )β̂) = 0

N∑

i=1

T∑

t=1

(ÿit − ẍit(ξ̂ )β̂) = 0, (C18)

© 2023 Oxford University and John Wiley & Sons Ltd.
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where (C18) follows from the first-order condition (C16) that
∑N

i=1

∑T
t=1 x(t)

k,ij/mβ̂k(yi −
xiβ̌) = 0 (recall that xi is a vector of all high-frequency variables x(t)

ij/m). Thus we have
shown that the F.O.C associated with the high-frequency Chamberlain estimator is exactly
the same as the F.O.C of the FE-NLS estimator.

The reason that low-frequency and high-frequency Mundlak estimators, as well as the
low-frequency Chamberlain estimator, are no longer identical to the FE-NLS estimator is
the same as the one given in the proof of proposition 1.

Final Manuscript Received: February 2022
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