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Strategic interactions for carbon emissions 
in Chinese cities are influenced by mayors

Bei Zhu     & Chu Wei     

City-related mitigation measures are crucial for reducing carbon emissions, 
but most studies on this issue treat cities as independent entities and neglect 
their interactions. This is especially relevant in the Chinese context, where 
peers influence policy decisions. Here we offer a novel perspective about 
mayors’ strategic interactions to explain cities’ carbon intensity reduction. 
We use a spatial Durbin model to investigate the effects and patterns of 
interaction on carbon intensity among Chinese cities from 2000 to 2019. We 
found that mayors’ interaction impacted cities’ carbon intensity, resulting in 
a 0.792% reduction in reference cities for every 1% decrease in neighboring 
cities. Mayors with higher education, younger ages, science-related majors 
and working in their hometowns had better performance. Additionally, 
we revealed an ‘imitation competition’ pattern (emulating the practices of 
the neighboring cities). This study offers new insights into city emissions 
policies and introduces new recommendations.

Cities are responsible for 70% of global carbon emissions from energy 
consumption1. In China, depending on the definition of emissions scope 
and accounting methodology, this proportion can reach up to 85%  
(ref. 2), which is much higher than that of the United States (80%) or 
Europe (69%)3. China was responsible for 28% of global energy-related 
carbon emissions in 2019 (ref. 4). Therefore, the international com-
munity has closely monitored China’s commitment to peak carbon 
by 2030 and achieve carbon neutrality by 2060 (‘3060’ goals)5. In this 
context, city-related mitigation measures are crucial to China’s efforts 
to reduce carbon emissions.

China has made notable progress in addressing climate change, 
which can be attributed to its political and economic system. The 
central government delegates considerable power to local govern-
ments to implement environmental regulations, which has resulted 
in effective environmental decentralization. The Chinese-style Perfor-
mance Appraisal System incentivizes mayors to commit to emissions 
mitigation by linking career prospects to their jurisdiction’s mitigation 
performance, creating political centralization. This approach has 
resulted in a ‘yardstick competition’ among mayors to seize opportuni-
ties for promotion under environmental decentralization and political 
centralization (Part A.1 in Supplementary Information). Behavior is 
interrelated because peers’ actions can affect the political and market 
environment in which local policy decisions are made6. Some evidence 
suggests that cities’ decision-making is not independent but is instead 

influenced by their peers. For instance, local governments may rush to 
adopt lower environmental standards to attract foreign investments7. 
Therefore, horizontal interaction is crucial to comprehending the 
public sector equilibrium in carbon emission reductions.

The trans-regional cooperation system in China aims to mobilize  
and reshape horizontal competition. For instance, the Counterpart  
Assistance System encourages developed cities to support cities  
in border and ethnic areas, the construction of major national  
projects areas, the Northeast Region, and emergency and disaster relief  
areas (many-to-one/many-to-many pattern), to address the problem 
of uneven regional development8. Therefore, inter-city linkage is not 
limited to a certain geographical range.

Academia has investigated the relationship between government 
and the reduction of carbon emissions. Previous scholars have ana-
lyzed the effectiveness of government regulations on the market enti-
ties9–11. The principal-agent theory was developed to explain situations 
where market mechanisms cannot predict the behavior of authorities. 
However, scholars have suggested that the behavioral logic behind  
China’s ecological and environmental regulations should be care-
fully examined, given China’s unique political and economic system. 
Scholars have developed theories to explain the effects of carbon 
emission, including incentive compatibility, promotion tournaments 
and yardstick competition in both vertical and horizontal relations12–14. 
For instance, according to Kahn et al.15, changes in political promotion 
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other hand, W3, which falls within the range of maximum and minimum 
values, is a more reasonable option. The robust test results are shown 
in Part E.3 in Supplementary Information.

Heterogeneity analysis of mayors’ strategic interactions
This study conducted the heterogeneity analysis of the strategic inter-
action effect, considering the spatial, temporal and urban differences 
(see the method in Part D.1 in Supplementary Information).

We examined the two identified characteristics to investigate 
the spatial heterogeneity of the strategic interaction effect on carbon 
intensity, as illustrated in Fig. 1a. The study found that the strategic 
interaction effect positively impacts cities within 1,400 km, while not 
for cities beyond this distance. This indicates that the interaction effect 
has a geographical threshold. The results suggest that strategic inter-
action behavior extends beyond provincial administrative boundaries 
to encompass a national scale. This may be related to China’s inter-
regional counterpart assistance and cooperation programs. Moreover, 
it shows that the strategic interaction effect increases and decreases as 
geographical distance increases, peaking at a radius of 400 km with a 
value of 0.708. This suggests that the most intense strategic interaction 
occurs within 400 km, usually within provincial boundaries. Therefore, 
it is crucial to consider the scope of the strategic interaction effect in 
the context of carbon regulation.

The interaction effects of five-year plans (FYPs) may vary due to 
distinct characteristics that shape national objectives and challenges. 
Figure 1b illustrates the impact of strategic interaction on carbon inten-
sity in each FYP. The 95% confidence interval indicates a significant 
difference from 0 for the coefficients. The interaction effects on carbon 
intensity showed an increasing trend, indicating increased attention 
toward neighboring cities’ carbon regulations. During the 10th FYP, the 
average effect value was 0.689, suggesting that for each 1% increase in 
the carbon intensity of neighboring cities, the carbon intensity of local 
cities increases by 0.689%. However, during the 11th FYP, the interac-
tion effect decreased slightly (0.681). Local governments’ interactive 
behavior was closely related to central government incentives. The 
more ambitious the central government pursued, the greater the effort 
local governments would make to recalibrate their competitive behav-
ior. During the 12th FYP, the national development strategy included 
a binding target of reducing carbon intensity by 17% for the first time. 
This target has been strengthened in subsequent FYPs to demonstrate 
the central government’s commitment. As a result, intergovernmental 

rules by the central government created an incentive for local authori-
ties to reduce border pollution. Regarding horizontal relations, local 
authorities adjusted their behavior based on their neighbors, resulting 
in various interaction patterns such as ‘race to the top’ (competing to 
achieve carbon reduction target) and ‘race to the bottom’ (following 
neighboring areas’ behavior to ignore carbon regulation)16,17.

These studies have contributed to the existing knowledge by 
introducing government behavior and enhancing our understanding 
of environmental governance. Although some studies have analyzed 
horizontal strategic interactions of environmental regulation, they 
mainly focus on water and air pollution (Table C1 in Supplementary 
Information)18–20. The relevant studies do not apply to a broader spa-
tial scope of strategic interactions. Pollution externalities are limited 
in a specific spatial scope and are highly dependent on geographical 
conditions. This implies that intergovernmental interactions are local-
ized. Pollution-based interactions are more evident in geographically 
adjacent cities within the same province, or that share a common 
administrative boundary. However, these studies cannot explain the 
global scope of carbon-based interaction. Additionally, the role of 
decision-makers has not been thoroughly investigated.

In this article, we applied a spatial Durbin model (SDM) to address 
these gaps using data from 284 Chinese cities between 2000 and 2019. 
The results of this study contribute to the existing literature in two 
ways. First, this paper presents a spatial perspective on explaining 
carbon intensity reduction in cities through horizontal strategic 
interactions. This supplements and enhances our understanding of 
cities’ behavior and creates appropriate policy instruments for city 
management. Second, we uncover the following finding: mayors who 
are younger, have higher education levels, with science-related back-
grounds, and work in their hometowns are significantly associated with 
greater reductions in carbon intensity. This suggests that mayors play 
a crucial role in combating climate change.

Results
Mayor’s strategic interaction effect on carbon emissions
Our first objective was to investigate the effects of strategic interaction 
on carbon intensity. The statistical tests, including the spatial autocor-
relation tests, likelihood ratio (LR) test and Wald tests, support the 
SDM model (Tables E1 and E2 in Supplementary Information). Table 1  
presents the strategic interaction effects between cities using four 
different spatial weight matrices W1-W4: geospatial distance matrix, 
economic distance matrix, economic and geospatial distance-weighted 
matrix and administrative distance matrix, respectively (see Table D2 
in Supplementary Information for the weight matrix settings). The 
estimated coefficients ρ of the four spatial weight matrices are signifi-
cantly greater than 0, indicating a positive interaction effect of carbon 
intensity between cities. In the ‘benchmark competition’ pattern, local 
cities will follow suit when their neighbors reduce their carbon intensity, 
supporting hypothesis 1 in Part A.2 of Supplementary Information. 
In terms of the magnitude of the interaction effect, the effects of the 
economic distance- and geospatial distance-weighted matrix (0.792) 
are larger than those of the administrative (0.678) and economic (0.071) 
distance-weighted matrices, but smaller than those of the geographical 
distance-weighted matrix (2.657). Accordingly, this study highlights 
pronounced strategic interactions between economically and geospa-
tially related cities. The economic and geospatial distance-weighted 
matrix (W3) was used in the subsequent analysis. The indicator offers a 
comprehensive view of the intricate relationships between local govern-
ments. Geographically adjacent cities share similar natural conditions 
and development levels, resulting in closely linked interests. In addition, 
cities are economically interconnected through ‘GDP-oriented’ promo-
tion tournaments, counterpart systems and competition for mobile 
resources. Therefore, a single matrix such as W1 cannot fully capture 
the horizontal interactions between local governments. Moreover, a 
higher value for W1 would lead to overestimating the results. On the 

Table 1 | SDM results under the four weight matrices

W1 W2 W3 W4

Neighbor effect (ρ)
2.657*** 0.071** 0.792*** 0.678***

(0.030) (0.028) (0.021) (0.010)

Control variable Yes Yes Yes Yes

Spatial fixed effect Yes Yes Yes Yes

Hausman test 4,226.93*** 522.59*** 143.38*** 623.88***

Wald test for SAR 230.04*** 103.53*** 172.43*** 289.61***

Wald test for SEM 129.49*** 103.95*** 181.23*** 205.38***

LR test for SAR 430.95*** 102.58*** 162.34*** 284.92***

LR test for SEM −76.67 102.99*** 138.18*** 201.52***

Observations 5,680 5,680 5,680 5,680

R2 0.104 0.045 0.040 0.008

Note: Table 1 presents the parameter estimation results using the maximum likelihood 
approach. The LR tests and Wald tests indicate that the SDM is suitable. The fixed effect 
model is suitable as the Hausman test result is significant at the 1% level. ‘Yes’ denotes that 
the control variable and spatial fixed effect are controlled in the model. The standard error is 
shown in parentheses. ***P < 0.01, **P < 0.05, *P < 0.1. P values are for a two-sided test based on 
normal distribution.
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strategic interaction has significantly increased, driven by the mobi-
lization of political resources to respond to the performance system 
reform of party and government cadres and the national campaign 
on carbon control. The average level of strategic interaction reached 
0.882 from 2011 to 2015 and 0.948 from 2016 to 2019.

We also examine whether there are any differences between the 
low-carbon pilot cities and the nonpilot cities. China has implemented 
three rounds of Low Carbon City Pilot programs in 2010, 2012 and 2017 
(for more details, see Part B of Supplementary Information). During 
these programs, cities were required to adhere to more stringent car-
bon intensity constraints21. Therefore, analyzing the interaction effects 
between low-carbon pilot and nonpilot cities is particularly important. 
Figure 2a compares the average effect of strategic interaction between 
pilot and nonpilot cities. The strategic interaction coefficient of pilot 
cities is 0.761, smaller than that of nonpilot cities (1.011), and differences 
between groups are statistically significant.

To assess cities’ carbon intensity reduction performance, it is 
crucial to analyze the strategic interaction effects of cities under dif-
ferent competitive pressures. Therefore, we divided the cities into two 
groups based on their carbon intensity rankings—the top 50% and bot-
tom 50%—and considered the latter facing greater pressure. Figure 2b  
shows a statistically significant strategic interaction coefficient of 
0.502 for the top 50% of cities. For cities in the bottom 50%, the stra-
tegic interaction coefficient is 0.700, which is 0.198 higher than the 
coeffi cient for cities in the top 50%. The differences between groups are 
statistically significant. In other words, cities falling behind in reducing 
their carbon intensity are more likely to respond to the performance of 
neighboring cities under great pressure to control carbon emissions.

China’s frequent cadre turnover facilitates local officials’ com-
pliance with central directives, enabling the central government to 
supervise and control them22. The system has recently incorporated 
auxiliary goals related to cadre training, policy dissemination and 
bridging administrative gaps23,24. China’s leadership attaches consider-
able importance to cadre turnover. However, few studies have assessed 
whether this system is functional in carbon regulation. We investigated 
whether the cadre turnover system affected the strategic interaction 
effect on carbon intensity between cities. The results are shown in 
Fig. 2c. The coefficient of the turnover year is statistically significant 
(0.785), while coefficient of the noncadre turnover year is not. The 
significant difference between turnover years and nonturnover years 
in implementing state-led carbon reduction initiatives may be due to 

cadre turnover motivating mayors to reduce emissions. This is also 
known as the proverbial ‘A new official applies strict measures’.

The political system centralizes carbon peaking targets to evaluate 
local governments, fostering political competition between mayors to 
reduce carbon emissions. As a result, local governments’ target setting 
inevitably takes into account those of superior and peer-level govern-
ments. The carbon peaking targets are positively correlated with local 
governments’ peak carbon pressure. Local governments sometimes 
set higher peak carbon targets than the national target to express their 
ambitions, which can result in increased carbon peaking pressure. 
Conversely, some conservatives follow or set lower carbon peaking 
targets after balancing economic growth and carbon intensity reduc-
tion, resulting in decreased peaking pressure. Figure 2d illustrates the 
differences in the interaction effect of carbon peaking pressures in 
various regions. It reports a statistically significant strategic interaction 
coefficient of 0.784 for cities with higher carbon peaking pressures, 
and the coefficient for cities with relatively lower pressures is 0.026 
lower. The differences between the two groups were not statistically 
significant. This suggests that carbon peaking pressures incentivize 
interactions between mayors with little variation between regions.

Mayors’ strategic interaction patterns
This study used the two-regime SDM to analyze the strategic inter-
action patterns in carbon regulations. Figure 3 shows the estimated 
coefficients of δ1 and δ2 based on the three different spatial matrices. 
The outcome for W2 was eliminated because most coefficients were 
insignificant. The results indicate an ‘imitative competition’ pattern, 
where city i will follow suit when neighboring cities increase or decrease 
their carbon intensity, thus verifying hypothesis 2 in Part A.2 of Supple-
mentary Information. In summary, local governments have the option 
to either compete to reduce carbon intensity (‘race to the top’) or follow 
neighboring areas’ behavior and ignore carbon intensity control (‘race 
to the bottom’) to balance their gross domestic product (GDP) and other 
objectives. The study also suggests that both low- and high-level equi-
librium can coexist. Moreover, in the ‘imitative competition’ pattern, 
stronger entities tend to imitate weaker ones, as the difference between 
the coefficients of δ1 is significantly smaller than δ2. For instance, when 
considering the spatial weight matrix W3, δ2 is significantly larger than 
δ1 by 0.164 in condition d1 and 0.055 in condition d2, respectively. This 
suggests that, for city i, the impact of neighboring cities with higher 
carbon intensity is considerably greater than those with lower carbon 
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Fig. 1 | Heterogeneity analysis of spatio-temporal interaction effects. a, Effect 
on different distances. The gray dotted line is the mean of interaction coefficient. 
The solid blue line indicates the 95% confidence interval. b, Effect on different 
FYPs. The squares are the mean of interaction coefficients. The line from top 

to bottom of each bar represents the 95% confidence interval. The sample size 
is 1,420 for each FYP. P values of the four group is 7.858 × 10−35, 2.223 × 10−35, 
7.006 × 10−134 and 4.124 × 10−264, respectively.
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Fig. 2 | Heterogeneity analysis of strategic interaction between different 
cities. The squares are the mean of interaction coefficients. The solid black line 
indicates the 95% confidence interval. The asterisks indicate the significance 
degree of between-group variation (***P < 0.010, **P < 0.050, *P < 0.100). A 
two-sided t-test is used for between-group variation comparison. a, Interaction 
effect on pilot and nonpilot cities. The sample size is 367 and 5,313 in the pilot 
group and the nonpilot group, respectively. P values between the pilot group 
and the nonpilot group is 1.36 × 10−6. b, Interaction effect on top 50% of cities 

and bottom 50% of cities. The sample size is 2,840 and 2,840 in top 50% group 
and bottom 50% group, respectively. P values between pilot group and nonpilot 
group is 4.7 × 10−8. c, Interaction effect on cadre turnover and nonturnover years. 
The sample size is 1,645 and 4,035 in the turnover group and the nonturnover 
group, respectively. P values between the pilot group and the nonpilot group is 
0.099. d, Interaction effect on high-pressure and low-pressure cities. The sample 
size is 1,120 and 4,560 in the high-pressure group and the low-pressure group, 
respectively. P values between the pilot group and the nonpilot group is 0.483.
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intensity. Table E4 in Supplementary Information lists the estimated 
coefficients of the two-regime SDM for the four matrices.

Mayors’ characteristics on carbon emission
The effects of mayors’ characteristics on carbon intensity were also esti-
mated. Table 2 shows that the mayor’s education degree is associated 
with reducing the city’s carbon intensity. This suggests that mayors with 
higher education levels may be more concerned about local carbon regu-
lations, which is consistent with previous studies25,26. Mayors in science-
related majors can reduce carbon intensity by 1.5% compared with social 
science-related majors. This suggests that mayors with science-related 
backgrounds are more likely to acquire and improve their knowledge 
and skills regarding carbon regulations. With regard to the age of the 
mayor, we found that carbon intensity increases by 0.2% annually due 
to officials’ aging. One explanation for this relationship could be the 
absence of promotional incentives for older mayors27. In addition, offi-
cials who work in their birthplaces exhibit a 1.5% decrease in carbon inten-
sity compared with those outside their hometowns. Previous research 
has shown that mayors who work in their hometowns are familiar  
with local conditions, enabling them to implement tailored measures  
to promote low-carbon development28. Table 2 also shows that the  
major and hometown of neighboring mayors have negative associations 
with local carbon intensity, while the age coefficient is positive. This 
suggests that the personal characteristics of neighbors may play a signifi-
cant role in strategic interactions. We also control other socioeconomic 
variables. For more details, see Part E.5 in Supplementary Information.

Discussion
Cities have become the dominant hub of global carbon emissions. 
Therefore, the efforts and measures taken by cities are critical in com-
bating climate change. Previous studies have identified and examined 
the factors influencing cities’ carbon emissions. However, few studies 
have explored the effect of horizontal interactions among local govern-
ments. Thus, we supplemented the existing literature and extended  
our research to include the strategic interaction of local governments 
and the role of mayors to gain insights into the progress of cities’ efforts 
to control carbon intensity. We aim to offer a fresh perspective on 
achieving carbon peak and neutrality.

The study found that the strategic interaction between geographi-
cally, economically and administratively related cities significantly 
reduced local cities’ carbon intensity. A 1% decrease in the carbon 
intensity of neighboring cities resulted in a 0.792% decrease in the 
carbon intensity of local cities. The results were tested for robustness 
by replacing the dependent variables and the estimation methods. Our 
heterogeneity analysis revealed that the strategic interaction effect 
between cities peaked at 400 km and disappeared at 1,400 km. The 
interaction effect showed an upward trend, particularly after the 12th 
FYP, and was more pronounced in nonpilot cities, cities that ranked 
in the bottom 50%, and in the cadre turnover years. Moreover, the 
carbon regulations of cities exhibited a strategic interaction pattern  
of ‘imitative competition’. In other words, local cities would follow suit if 

neighboring cities strengthened or weakened their carbon regulations. 
We also reveal that mayors play a crucial role in combating climate 
change, and those who are younger, have science-related backgrounds, 
have higher levels of education and work in their hometowns are sig-
nificantly associated with greater reductions in carbon intensity.

These findings have important policy implications for future 
research. It is crucial to incorporate binding carbon performance 
and related elements, such as declining carbon emissions per unit of 
GDP and declining energy consumption per unit of GDP, to reduce 
distortions in local officials’ behavior, such as imitating the laggards. 
When evaluating officials, it is also important to consider the public’s 
perception of carbon performance. To improve government account-
ability, the National People’s Congress and Chinese People’s Political 
Consultative Conference should be utilized for supervision. Differential 
elections can also be organized to align officials’ career paths with the 
public’s desire for green development.

Second, as the strategic interaction effect is more pronounced 
within provincial boundaries (within 400 km), provincial governments 
should pay particular attention to the interactive effect when design-
ing carbon plans. Additionally, nonpilot cities, cities in the bottom 
50%, and cities with the cadre turnover are more vulnerable to the 
influence of their neighbors. Therefore, it is beneficial to encourage 
positive carbon-based interaction by following the example of suc-
cessful leaders and frontrunners is imperative to sharing practical 
experiences with surrounding cities. This also suggests the necessity 
of a ‘joint prevention and control’ approach to carbon governance, 
characterized by trans-regional cooperation and learning between 
local governments. Higher levels of government should guide local 
governments in adapting ‘imitate competition’ to suit local conditions.

Third, strengthening the administrative capacity of mayors. Estab-
lishing a carbon-related capacity training system for officials without 
carbon governance backgrounds would be beneficial. State-led carbon 
reduction initiatives can also select agents on the basis of the mayors’ 
characteristics, such as young, native and highly educated officials.

This study has limitations that can be improved in future research. 
The lack of relevant official data makes obtaining more information 
about mayors’ behavior challenging. It would be worthwhile to study 
the mechanism of local governments’ strategic interaction in carbon 
governance and examine the attitudes of local leaders toward the 
interaction between carbon regulations and their enforcement. In 
addition, the estimated coefficients in this study cover only the average 
interaction effect on carbon regulations from 2000 to 2019 due to the 
deficiency of generating dynamic matrices in the SDM model. Ideally, 
a spatial panel weight matrix should be constructed annually for cities 
with changing neighborhoods.

Methods
Econometric model
The theoretical analysis reveals that the carbon emissions of city i can 
be written as Carboni = f(Carbonj, Xi). This implies that a city’s carbon 
emission is influenced by its control variables and neighboring cities’  
carbon emissions. However, the classical linear model implies that 
individuals are independent, which results in biased coefficient esti-
mators for spatial data. Thus, to estimate the strategic interaction, 
spatial econometrics is required. The SDM, proposed by LeSage and 
Pace29, can simultaneously incorporate the spatially lagged depend-
ent variable, spatially lagged independent variables, and a spatially 
autocorrelated error term. It theoretically confirms the interaction 
effects related to peers and solves methodological endogeneity and 
geographic autocorrelation problems of the spatial autoregressive 
model (SAR) and spatial error model (SEM). Therefore, it should be 
prioritized in empirical analysis. The model is shown in equation (1):

lnCIit = ρ
n
∑
j≠i

WijlnCIjt + β1Xit + β2

n
∑
j≠i

WijXjt + μi + λt + εit (1)

Table 2 | Direct and indirect effects of SDM under W3

Direct effect Indirect effect

Education −0.005* (0.003) w × Education −0.071 (0.053)

Major −0.015** (0.004) w × Major −0.156** (0.077)

Tenure 0.000 (0.001) w × Tenure 0.013 (0.019)

Age 0.002*** (0.001) w × Age 0.034*** (0.012)

Hometown −0.015*** (0.005) w × Hometown −0.329*** (0.092)

Observations 5,680 R2 0.040

Note: standard error is in parentheses. P values are for a two-sided test based on normal 
distribution. ***P < 0.01, **P < 0.05, *P < 0.1.
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where lnCIit denotes the carbon intensity level of city i in year t. Like time 
lags, ∑n

j≠i WijlnCIjt is the spatial lag term, and Wij is the spatial weights 
matrix, defining the distance between city i and city j. Geospatially, 
economically and administratively related neighbors between cities 
are considered. Table D2 in Supplementary Information presents 
the spatial weight matrices. Parameter ρ measures the effect of the 
strategic interaction on carbon regulations. Xit denotes the city-level 
control variables, including the personal characteristics of mayors and 
socioeconomic factors, and ∑n

j≠i WijXjt denote the spatial lag term of Xit. 
µi is the city fixed effect, reflecting cities’ socioeconomic differences, 
λt represents each period’s macro shocks and policy effects, and εit is 
the random error term.

There is a spatial lag term in equation (1), indicating that the  
estimation coefficients do not reflect the marginal effect of the inde-
pendent variables on the dependent variables29,30. A spatial econo-
metric model can explain the direct and indirect effects. To further 
assess these effects, we revised equation (1) as equation (2):

lnCIit = (I − ρ
n
∑
j≠i

Wij)
−1

(Xitβ1 +
n
∑
j≠i

WijXjtβ2) + (I − ρ
n
∑
j≠i

Wij)
−1

μi

+(I − ρ
n
∑
j≠i

Wij)
−1

λt + (I − ρ
n
∑
j≠i

Wij)
−1

εit

(2)

Equation (1) estimates the effect of the interaction and assumes that 
the impact of other cities on city i is the same. However, the dynamic 
responses of cities may differ because of their different carbon emis-
sion levels. To identify the cities’ different responses, we used the 
two-regime SDM proposed by Fredriksson and Millimet31 and Konisky32  
to test for an asymmetrical strategic interaction, as follows:

lnCIit = δ1dk(k=1,2)
it

N
∑
j=1

WijlnCIjt + δ2 (1 − dk(k=1,2)
it )

N
∑
j=1

WijlnCIjt + βXit

+θ
N
∑
j=1

WijXit + α + μi + λt + εit

dit1 =
⎧⎪
⎨⎪
⎩

1, if lnCIi,t >
N
∑
j=1

Wi, jlnCIj,t, i ≠ j

0, others

d2
it =

⎧⎪
⎨⎪
⎩

1, if
N
∑
j=1

Wi,jlnCIj,t <
N
∑
j=1

Wi, jlnCIj,t−1, i ≠ j

0, others
.

(3)

Generally, dynamic interaction behavior can be empirically ana-
lyzed in two ways. The first is to examine how neighbors’ spatial differ-
ences in carbon intensity affect those of local cities (condition d1). The 
second is to examine how neighbors’ temporal changes regarding car-
bon intensity affect that of local cities (condition d2). In equation (3),  
dit is a binary indicator variable that depicts the asymmetric strategy 
behavior of the two situations regarding their carbon intensity. In 
condition d1, dit

1 is equal to 1 if city i has a higher carbon intensity level 
than their neighboring cities’ weighted average; otherwise, it takes the 
value of 0. Coefficient δ1 is the response coefficient of carbon regula-
tions in city i when the neighboring cities’ average carbon intensity 
levels are lower than those of city i. Conversely, δ2 reports the coeffi-
cient when the neighboring cities’ carbon intensity level are equal 
to or higher than those of city i. In condition d2, dit

2 is equal to 1 if the 
carbon intensity levels of neighboring cities in year t are lower than 
those in year t − 1; otherwise, it takes the value of 0. The coefficient δ1 
is the response coefficient of the carbon intensity level in city i when 
the neighboring cities decrease their carbon intensity compared with 
the previous year. Conversely, δ2 reports the coefficient when the 
neighboring cities do not change or increase their carbon intensity 

levels compared with the previous year. The other terms are identical 
to those in equation (1).

Table E3 in Supplementary Information presents the five strategic 
interaction patterns based on the value and significance levels of δ1 
and δ2. Form 1 is the ‘imitative competition’ pattern. In this form, δ1 > 0 
and δ2 > 0, which denote whether neighboring cities have higher or 
lower carbon intensity levels than city i or their previous year, once 
they increase or reduce their carbon intensity, city i will follow suit. 
‘Imitative competition’ involves both the ‘race to the top’ and ‘race to 
the bottom’ patterns, which is consistent with hypothesis 2 in Part A.2 
in Supplementary Information. Form 2 is the ‘race to the top’ pattern. 
In this form, δ1 > 0, while δ2 < 0 or δ2 are insignificant, meaning that, 
when neighboring cities have lower carbon intensity levels than city i  
or their previous year, city i will follow suit. Conversely, form 3 is the 
‘race to the bottom’ pattern. In this form, δ2 > 0, while δ1 < 0 or δ1 are 
insignificant, indicating that, when neighboring cities have higher 
carbon intensity levels, city i will follow suit. Form 4 is the ‘differenti-
ated interaction’ pattern. In this form, δ1 < 0, δ2 < 0; δ1 < 0, while δ2 is not 
significant; δ2 < 0, while δ1 is not significant. Take δ1 < 0 while δ2 < 0 as 
an example. Neighboring cities have lower carbon intensity levels than 
city i or the previous year, and once they decrease carbon intensity, city 
i will inversely increase carbon intensity, which validates the classic 
free-riding phenomenon. Form 5 signifies ‘no strategy’, with both δ1 
and δ2 being nonsignificant.

Variables and data
For dependent variable, this study uses carbon intensity because it is 
highly correlated with government behavior. The national 12th FYP 
has raised the reduction of carbon dioxide emissions per unit of GDP 
to the key objective of carbon reduction33. The binding goals accom-
panied by the Chinese-style Performance Appraisal System motivated 
mayors to put more effort into reducing carbon intensity. We take its 
logarithmic form. The carbon emission data come from Carbon Emis-
sions Accounts and Datasets (CEADs, https://www.ceads.net.cn/). The 
emission inventories are compiled for 47 economic sectors and include 
energy-related emissions for 17 types of fossil fuels and process-related 
emissions from cement production34.

This study included two categories of control variables. One related 
to city officials’ characteristics. Education level is used to measure 
officials’ ability35, and carbon intensity may be negatively correlated 
with officials’ ability36. Age denoted the age of the local officials of city 
i in year t, as older leaders are less likely to reduce carbon intensity 
actively35. In this study, we considered the mayors’ major as a factor 
that could influence a city’s carbon reduction efforts. According to 
the Ministry of Education’s discipline classification, science-related 
majors include science, technology, engineering, mathematics and so 
on, while social science majors include economics, geography, history, 
law, philosophy, political science, anthropology, archeology and so on. 
Mayors with science-related backgrounds may have a relative advan-
tage in carbon emissions accounting and technology or in designing 
emission reduction plans, leading to a potential reduction in carbon 
intensity37. We included the mayor’s tenure because some studies have 
suggested that career-oriented officials are more likely to reduce carbon 
emissions during their first few years38. Finally, we measured whether 
an official had served in their hometown, as local knowledge enables 
carbon reduction policies to be tailored for local development39.

The second variable category included socioeconomic character-
istics. We used gross domestic product per capita (PGDP) to measure 
a city’s economic development level. According to the environmental 
Kuznets curve hypothesis, a U-shaped relationship exists between 
economic growth and environmental quality40. Therefore, we incor-
porated PGDP and its quadratic term into the empirical analysis using 
its logarithmic form. We used fiscal decentralization (FD) to reflect 
local governments’ financial autonomy. A higher degree of FD implies 
more authority for mayors to implement environmental regulations. 

http://www.nature.com/natcities
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We calculated it as follows: fdc/(fdn + fdp + fdc), where fdn, fdp and fdc 
represent budgetary expenditure per capita at the national, provincial 
and city levels, respectively. We determined the Open variable by the 
total import and export trade volume ratios to GDP. We considered 
the pollution haven and halo hypotheses in this context41. The pollu-
tion haven hypothesis posits that pollution-intensive companies seek 
investment possibilities in nations with lax environmental standards42, 
while the pollution halo hypothesis argues that foreign firms that meet 
higher environmental standards can improve the ecological quality 
of their host country43. As trade has opposing effects on the carbon 
intensity of a host area, its impact on carbon intensity is ambiguous. 
We used technological innovation, represented by the number of green 
patents, as this aspect facilitates the development of energy-saving and 
emission-reducing technologies, thereby reducing carbon intensity44. 
We used the logarithmic form of technological innovation in the analy-
sis. As our primary focus was on carbon intensity, we used the ratio of 
secondary industry value added to GDP to illustrate a city’s industrial 
structure45. We used fixed-asset investment (fixed) as it plays a signifi-
cant role in carbon intensity; increasing investment in industry is the 
mayors’ principal strategy for promoting local economic development 
and increasing carbon intensity46. We used its logarithmic form. Finally, 
we used the urbanization rate to measure the proportion of the urban 
population to the total population, as a high urbanization rate is asso-
ciated with rapid economic development and high carbon intensity.

Our panel data included 284 cities from 2000 to 2019. We care-
fully screened the data to eliminate samples with missing informa-
tion. We obtained the socioeconomic data from the China Statistical 
Yearbooks, China Science and Technology Statistical Yearbooks, China 
City Statistical Yearbooks and the CEIC database. Carbon emission 
data comes from the CEADs database. To acquire the mayors’ personal 
characteristics data, three main steps are followed. First, we manually 
collected the names of successive mayors of the Chinese cities from 
2000 to 2019. Second, based on the information of the mayors’ name 
and year in office, we manually extracted the individual information 
of the mayors from Local Party and Government Leaders Personality 
Database in China Economic Network47, the official websites of city gov-
ernments and the Baidu Wikipedia database. The information includes 
gender, birthdate, birthplace, education level, profession and so on. 
Third, we quantified these raw data. The monetary variables have all 
been deflated to 2000 constant prices. For the descriptive statistics of 
the data, see Table F1 in Supplementary Information.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Most of the data in this study are sourced from publicly available data 
sources. Datasets that are allowed to be shared are available through 
GitHub at https://github.com/2020000927/-Dynamical-Systems-
Laboratory-Strategic-interaction-.git (ref. 48).

Code availability
Analysis was performed using custom-made scripts coded in Stata 
(Version 16) and MATLAB (Version R2023a). The do file includes the 
code of baseline model, robust test and temporal and spatial het-
erogeneity analysis. The m file includes the code of strategic interac-
tion pattern, heterogeneity analysis pilot, rank and turnover). Scripts 
used for this study are available through GitHub at https://github.
com/2020000927/-Dynamical-Systems-Laboratory-Strategic-inter-
action-.git (ref. 48).
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