2022与国际期刊主编面对面交流(三)
主办单位
中国人民大学应用经济学院
主讲嘉宾
李鲲鹏
首都经济贸易大学 国际经济管理学院
参编期刊
Journal of Business & Economic Statistics期刊编委(Associate Editor)
《计量经济学报》期刊第一届编委
会议信息
时间:
2022年6月15日(周三)10:00-11:30
北京时间
主持人:
应用经济学院 苏立
线上地点:
腾讯会议:367182485
会议链接:https://meeting.tencent.com/dm/DkIXZh8CagoR
主讲人简介
李鲲鹏教授现为首都经济贸易大学国际经济管理学院院长。2011年毕业于清华大学经济管理学院获得经济学博士学位。他的研究方向主要集中高维因子分析、交互效应面板模型、空间计量模型、动态面板模型、门限模型和断点模型、分位数模型、非平稳时间序列分析、经验过程及其应用。
他在国内外高水平期刊上发表论文30余篇,包括Annals of Statistics、Journal of Business and Economic Statistics、Journal of Econometrics、Review of Economics and Statistics、Management Science等,出版学术专著《高维因子模型的极大似然分析》1部,主持国家自然科学基金3项、教育部人文社科基金1项,担任Journal of Business and Economic Statistics期刊编委(2018-2024)和《计量经济学报》第一届编委,并担任Journal of Econometrics、Journal of Business & Economic Statistics、Journal of Applied Econometrics、Econometric Theory、Economtric Reviews、Journal of the Royal Statistical Society: Series B、Journal of Computational and Graphical Statistics、Economics Letters、《经济研究》、《统计研究》、《系统工程的理论与实践》等期刊的匿名审稿人,是金融计量与风险管理学会副理事长和中国数量经济学会常务理事。
讲座简介
Title::Are Bond Returns Predictable with Real-Time Macro Data?
Abstract::We examine whether bond returns are predictable with real-time macro variables with explicit consideration of nonlinear relationship between the forecasting target and the latent factors and the presence of weak factors. We propose a scaled sufficient forecasting procedure to deal with the issues arising from these two features, and study its asymptotic properties. We apply our method to government bond returns, and find that it has significant in- and out-of-sample forecasting power, generates sizeable economic values, and outperforms alternative methods in varying specifications. We also find that the forecasted bond returns are countercycilcal and the magnitude of predictability is stronger in economic recessions, thereby lending empirical support to well-known macro finance theories. Overall, we explain why the literature on bond return predictability is mixed and show how to improve it theoretically and empirically。